
PERFORMANCE PREDICTION OF CONSERVATIVE PARALLEL DISCRETE
EVENT SIMULATION

Gábor Lencse
Széchenyi István University

Egyetem tér 1.
H-9026 Győr, Hungary

lencse@sze.hu

András Varga
Opensim Ltd.
Szőlő köz 11.

H-1032 Budapest, Hungary
andras@omnetpp.org

KEYWORDS

performance analysis, parallel discrete event simulation,
conservative synchronisation method, speed-up, OM-
NeT++

ABSTRACT

In a previous paper, a quantitative criterion has been pro-
posed for efficient execution of the Null Message Protocol,
the best- known conservative parallel discrete event simu-
lation (PDES) protocol. The criterion is based on a novel
concept of the coupling factor, and allows one to use in-
tuitive and easy-to-measure input parameters. The crite-
rion can be used to assess simulation models’ potential for
parallel execution as well as the maximum partitioning
that may still potentially yield good performance.

This paper deals with experimental verification of the pro-
posed rule that a large coupling factor is a necessary pre-
condition for getting a good speed-up with conservative
parallel simulation. A closed queueing network is used as
simulation model, and it is run on up to 24 CPU cores. It
is shown that the criterion provides a quick and conven-
ient way to determine whether a simulation model has a
potential for speed-up before actually investing work in
the parallelization.

INTRODUCTION

Because of the rapid development and growth of informa-
tion and communication technology (ICT) systems in the
last decades, the analysis of their performance is an impor-
tant issue. Event-driven discrete event simulation (DES)
is a powerful tool for this task. Nevertheless, the systems
are often so large and complex and the number of events is
so high that the execution requires unacceptably long time
even using a supercomputer. Let us review first the solu-
tions that were proposed for this problem so far.

Parallelisation can be a natural solution. However, it is not
an easy task and the achievable speed-up is often limited.
The reason is the algorithm of the event-driven DES.
When doing parallel discrete event simulation (PDES),
the model of the system is divided into partitions (called
Logical Processes), and the partitions are assigned to proc-
essors that are executing them. To maintain causality, the
virtual times of the partitions must be synchronised. There
are three different methods for synchronisation. The first
two are described in (Fujimoto 1990).

The conservative method ensures that causality is never
violated. An event can be executed only if we are certain
that no events with smaller timestamp exist (and also will
not be generated) anywhere in the model. Unless the simu-
lated system has a special property that the so called look-
ahead is large enough, the processors executing the parti-
tions need to wait for each other in the majority of time, so
the achievable speed-up is poor.

The optimistic method allows and detects causality errors
and uses roll-backs to recover from them. However, there
are some problems associated with roll-backs. First, the
ability of the roll-backs requires extra functionality (e.g.
state saving and restoration) from both the simulation ker-
nel and the models1. Even though a simulator may support
optimistic parallel execution, model authors may not be
willing to invest the extra work in the model building that
is needed to prepare the model for the optimistic method.
Second, above a certain number of processors the resource
consumption of the roll-backs may hinder the good speed-
up and the algorithm may not scale well. Third, state sav-
ing and restoration itself has CPU and memory costs, de-
creasing the gain from parallel execution.

The statistical synchronisation method (SSM) has been
proposed by György Pongor (Pongor 1992). SSM does not
exchange individual messages between the partitions, but
rather the statistical characteristics of the message flow. In
its original form, SSM was applicable for the analysis of
steady state behaviour of systems. It was further devel-
oped (as SSM-T) by Gábor Lencse (Lencse 1998). The
method can produce excellent speed-up, but has a limited
area of application (Lencse 1999). For more information
about the three methods, see (Lencse 2002) and its refer-
ences.

In the paper (Varga et al. 2003), the authors propose a
method for assessing available parallelism in a simulation
model for conservative synchronization. The method re-
quires only a small number of parameters that can be eas-
ily measured on a sequential simulation.

1 Assuming that C or C++, the usual languages for high-
performance simulations, are used to implement the mod-
els. Models written in idiomatic C/C++ cannot be auto-
matically save/restored by the simulation kernel.

In this paper, we intend to check the results of the afore-
mentioned work for a higher number of processors, and
also examine how different parameters of the model influ-
ence achievable speed-up.

The remainder of this paper is organised as follows: first,
we briefly summarize the method for assessing the avail-
able parallelism: we describe the necessary parameters and
present the method; then we describe the hardware and
software environment of our experiments; next, we repeat
some of the experiments of Varga et al. for higher number
of processors; then we examine how the speed-up depends
on some of the parameters; finally, we present our conclu-
sions.

This topic was identified as being of importance in the
parallel simulation of large systems.

ASSESSING AVAILABLE PARALLELISM

The paper (Varga et. al. 2003) uses the notations ev for
events, sec for real world time in seconds and simsec for
simulated time (model time) in seconds. The paper uses
the following quantities for the assessing of available par-
allelism:

• P performance represents the number of events proc-
essed per second (ev/sec). P depends on the perform-
ance of the hardware and the amount of computation
required for processing an event. P is independent of
the size of the model.

• E event density is the number of events that occur per
simulated second (ev/simsec). E depends on the model
only, and not on the hardware and software environ-
ment used to execute the model. E is determined by
the size, the detail level and also the nature of the
simulated system.

• R relative speed measures the simulation time ad-
vancement per second (simsec/sec).
Note that R = P/E.

• L lookahead is measured in simulated seconds (sim-
sec). When simulating telecommunication networks
and using link delays as lookahead, L is typically in
the microsimsec–millisimsec range.

• τ latency (sec) is the latency of sending a message
from one Logical Process (LP) to another. This value
is usually in the µs-ms range, and is largely deter-
mined by the hardware and software on which the
simulation runs.

• λ coupling factor can be calculated as the ratio of LE
and τP:

P
EL
⋅
⋅

=
τ

λ (1)

The paper (Varga et. al. 2003) states that the chance of the
good speed-up of the PDES using the conservative syn-
chronisation method can be predicted on the basis of the

magnitude of λ. The work supports its theoretical result
by experiments performed on clusters of 2 or 4 (single
core) CPUs. The aim of this paper is to verify those results
by experiments performed on larger clusters up to 12 dual
core CPUs (that is, 24 cores).

HARDWARE AND SOFTWARE ENVIRONMENT

For our experiments, we used a cluster of 12 PCs with
AMD Athlon 64 X2 Dual Core 4200+ processor, 2*1GB
DDR2 667MHz (dual channel) RAM and NVIDIA
nForce® 500 SLI™ MCP built-in Gigabit Ethernet NIC.
The hosts were interconnected by a 3Com 2948-SFP Gi-
gabit Ethernet switch.

The hosts were running Debian Squeeze GNU/Linux op-
erating system and LAM/MPI 7.2.1 cluster software.

The communication latency between the hosts (the PCs of
the cluster) over MPI was about 25µs.

We have created user accounts called "mpi" on all the
hosts. Its home directory was stored on a SUN Fire X4200
M2 NFS server connected by the same Gigabit Ethernet
switch.

We used private IP addresses, and there was no other load
on the cluster and NFS server during the experiments.

We used OMNeT++ version 4.0p1.

THE SIMULATION MODEL

For the experiments, we used the Parallel CQN (Closed
Queueing Network) simulation sample program of OM-
NeT++ – the same model that the original work used. This
model consists of M tandem queues where each tandem
consists of a switch and k single-server queues with expo-
nential service times (Figure 1).

Figure 1. M=3 Tandem Queues with k=6 Single Server

Queues in Each Tandem Queue

The last queues are looped back to their switches. Each
switch randomly chooses the first queue of one of the tan-
dems as destination, using uniform distribution. The
queues and switches are connected with links that have
nonzero propagation delays. The OMNeT++ model for
CQN wraps tandems into compound modules.

To run the model in parallel, we assign tandems to differ-
ent LPs (Figure 2.). Lookahead is provided by delays on
the marked links.

S

S

S

CPU2

CPU1

CPU0

Figure 2. Partitioning the CQN Model

As for the parameters of the model, we have used the pre-
set values shipped with the model. We chose configuration
B, the one that promised good speed-up. The main pa-
rameters were: M=24 tandem queues, k=50 queues in each
tandem queue, exponential service time of the queues with
expected value of 10 seconds. As for the delay between
the tandem queues, first we used the preset value of L=100
seconds, and later we used this parameter to achieve the
values of λ, which we were interested in.

THE EXPERIMENTS

First, we ran a single processor simulation with L=100s to
measure the E and P variables necessary for the calcula-
tion of λ. It is a very convenient feature of the OMNeT++
simulator that it displays these variables both in its GUI
and command line user interfaces. We used the latter for
the measurement, because at the time of the parallel simu-
lation we needed to use the command line environment to
facilitate convenient experimenting. For the value of λ, we
got:

2500
2500001025
156100

6 ≈
⋅⋅
⋅

=
⋅
⋅

= −P
EL

τ
λ (2)

This is an appropriate value to expect good speed-up ac-
cording to (Varga et. al. 2003). The value of λ decreases
with the number of LPs. If we use N number of LPs, then:

NN
λλ = (3)

We performed a series of experiments for the following
values of N: 1, 2, 4, 6, 8, 12 and 24. N=1 means that there
was only a single LP. From 2 to 24, we included N/2 num-
ber of dual core hosts in the MPI virtual machine, each
running 2 LP’s. Each LP contained M/N tandem queues.
(E.g. N=6 means that there were 6 LP’s executed by the 6
cores of 3 hosts, and each LP contained 4 tandem queues.)

With a few exceptions, we executed every experiment
n=11 times, and calculated average and standard deviation
for the ti execution times.

Initial Results

Our first results are shown in Table 1.

Table 1. Execution Time and Speed-up in the Function of
the Number of Logical Processes with L=100s Lookahead

number of LP's 1 2 4 6 8 12 24
avg. ex. time [sec] 516.55 291.27 140.00 94.09 72.27 50.18 33.91
exec time std. dev. 5.47 11.31 7.46 1.14 1.62 0.60 0.30
speed-up 1.00 1.77 3.69 5.49 7.15 10.29 15.23
relative speed-up 1.00 0.89 0.92 0.91 0.89 0.86 0.63

Note that except the case of N=24 LPs, the value of λN is
always higher than 200, and there is an excellent speed-
up. λ24=104 corresponds to an acceptable but significantly
lower speed-up (the relative speed-up is only 0.63).

To examine the effect of λ being one order of magnitude
smaller, we carried out the same series of experiments for
L=10s, too.

Table 2. Execution Time and Speed-up in the Function of
the Number of Logical Processes with L=10s Lookahead

number of LP's 1 2 4 6 8 12 24
avg. ex. time [sec] 523.09 307.64 157.73 114.64 99.27 91.45 119.27
exec time std. 11.78 20.72 1.19 1.9633 2.57 0.69 0.79
speed-up 1.00 1.70 3.32 4.56 5.27 5.72 4.39
relative speed-up 1.00 0.85 0.83 0.76 0.66 0.48 0.18

Table 2 shows the results for an L lookahead 10 times
smaller than in Table 1. The changed lookahead also
means that the values of λN are also approximately2 10
times smaller. For N=4 LPs, the calculated value of λ4
=2500/10/4=62.5 still results in a 3.32 times speed-up and
a relative speed-up of 0.83. For the values of N=6, 8 and
12, the relative speed-up is visibly degrading, and for
N=24 it becomes poor: 0.18. (The execution time in-
creases if we use 24 LPs instead of 12 LPs.)

Vacationing Jobs and their Influence on λ

Given that our simulation model is relatively simple, it
would be tempting to think that its performance character-
istics (P and E) do not depend on the L lookahead, and so
λ is directly proportional to L. However, this assumption is
incorrect due to the phenomenon of "vacationing jobs",
explained below. The consequence is that λ must be calcu-
lated independently from P and E measured for each value
of L.

2 But not exactly, see explanation later.

If we compare the execution times of the sequential simu-
lations we can observe a slight difference: it is 523s and
517s for the lookahead values of 10s and 100s, respec-
tively. The difference is even more radical for L=1000s;
then the execution time is 416s. The explanation is that as
L increases, a higher proportion of the jobs will be "buff-
ered" in the long-delay links among the tandems, that is,
they are effectively removed from the queueing inside the
tandems. This phenomenon results in a lower load for
higher values of L. Let us refer to these jobs as "vacation-
ing" jobs.

Our model is a closed queueing network, so the number of
the jobs in the system is constant; in our model this num-
ber is always 2400, as there are 24 tandems, 50 queues in
all tandems, and initially 2 jobs are placed in each queue.
When the switch makes a decision about a job, with the
probability of 23/24≈95.8% the job will be sent to a dif-
ferent tandem, that is, the job will be vacationing for L
simulated seconds before it arrives at the first queue of the
destination tandem. A tandem consists of k=50 queues,
and each of them has an exponential service time with a
mean of 10s and an output latency of 1s (modelled as link
delay between adjacent queues). As a rough estimation,
we can say that at the beginning of the simulation (when
the jobs are distributed evenly and there are no vacation-
ing jobs) the complete travel of a job through the tandem
will last:

50*(10s+10s+1s)=1050s (4)

This is an estimated service time of the tandem, valid only
at the beginning of the simulation. For L=100s and 1000s,
the vacationing time is comparable to the roughly esti-
mated service time of the tandem. As a very rough3 ap-
proximation, we can say that 10% of the jobs are vacation-
ing for the L=100s lookahead. Because of the capabilities
of the OMNeT++ simulator, the number of vacationing
jobs can be easily determined. The jobs are represented by
messages in OMNeT++, and the messages representing
vacationing jobs are residing in the Future Event Set
(FES). The number of the events in the FES is displayed
in the GUI of the simulator, and even the contents of the
FES can be interactively examined during the simulation.
We have found that on average, 245 messages represent-
ing jobs (≈10%) were present in the FES in the case of the
sequential simulation with L=100s lookahead.

The consequence of vacationing jobs is that the value of λ
cannot be calculated for the different lookahead values
from the parameters that we measured with L=100s looka-
head, but the parameters should be measured for all the
different lookahead values.

3 The vacationing events are missing from the tandems, so
the service time of the tandems will be less, than it was in
the beginning of the simulation.

We measured the value of λ for the different values of L to
see how much the difference is. Now, we did not use sam-
ples from the P and E values displayed by the simulator
during the experiments (as we did it for the initial estima-
tion of λ), rather made complete runs and used the meas-
ured full event number (ev) and execution time (sec) for
the calculation of P and E. The elapsed virtual time was
always 10 days, that is, 864000 simsec. Table 3. shows the
measured values, and the λ values calculated (incorrectly)
using linear extrapolation from the L=100s case. It is ap-
parent that in the L=1000s case there is a significant dif-
ference between the measured and linearly extrapolated λ
values.

Table 3. The Values of λ in the Function of the Looka-
head (measured vs. calculated from the initial estimation)

L [simsec] 0.1 1 10 100 1000

events 138122606 138091806 137816386 134885378 102957082

exec. t.[sec] 524.18 521.36 523.09 516.54 415.73

P [ev/sec] 263502.24 264868.43 263465.92 261132.49 247653.72

E [ev/simsec] 159.86 159.83 159.51 156.12 119.16

meas.'d λ 2.43 24.14 242.17 2391.39 19246.76

λ0*L/L0 2.50 25.00 250.00 2500.00 25000.00

The Effect of the Magnitude of λ on the Available
Speed-up

To fully explore the effect of the magnitude of λ on the
available speed-up, we conducted a series of experiments
for other values of L: L=100ms, 1s, 10s, 100s and 1000s.
Figures 3-7 show the results.

1; 1,00
2; 0,85

4; 0,246; 0,198; 0,17 12; 0,12 24; 0,060,0
0,2
0,4
0,6
0,8
1,0
1,2

0 5 10 15 20 25 30
N number of LPs

Sp
ee

d-
up

Figure 3. Speed-up in the Function of N for L=0.1s

2; 1,56
4; 1,92

6; 1,69
8; 1,45

12; 1,10

24; 0,55

1; 1,00

0,0

0,5

1,0

1,5

2,0

2,5

0 5 10 15 20 25 30
N number of LPs

Sp
ee

d-
up

Figure 4. Speed-up in the Function of N for L=1s

1; 1,00
2; 1,70

4; 3,32

6; 4,56
8; 5,27

12; 5,72

24; 4,39

0
1
2
3
4
5
6
7

0 5 10 15 20 25 30
N number of LPs

Sp
ee

d-
up

Figure 5. Speed-up in the Function of N for L=10s

1; 1,002; 1,77
4; 3,69

6; 5,49
8; 7,15

12; 10,29

24; 15,23

0
2
4
6
8

10
12
14
16

0 5 10 15 20 25 30
N number of LPs

Sp
ee

d-
up

Figure 6. Speed-up in the Function of N for L=100s

1; 1,002; 1,97
4; 3,75

6; 5,63
8; 7,63

12; 11,29

24; 20,79

0

5

10

15

20

25

0 5 10 15 20 25 30
N number of LPs

Sp
ee

d-
up

Figure 7. Speed-up in the Function of N for L=1000s

Results in Figures 3-7 have been summarized in Figure 8,
and speed-ups have been translated to relative speed-up
(speed-up divided by the number of LPs) for better com-
parison.

0

0,2

0,4

0,6

0,8

1

1,2

0 5 10 15 20 25 30
Number of LP's (N)

R
el

at
iv

e
sp

ee
d-

up

L=1000s

L=100s

L=10s

L=1s

L=0,1s

Figure 8. Relative Speed-up in the Function of N for

L=0.1s, 1s, 10s, 100s, 1000s Lookahead

Figure 8 shows the relative speed-up in the function of N
for these values of L. The nearly constant 1 value of the
relative speed-up for L=1000s means a near-linear speed-

up. This is in accordance with the value of
λ24=19246.76/24≈802 (taken from Table 3). As for the
other extremity, there is no speed-up even for two proces-
sors for L=0.1s – this is also complies with our expecta-
tions as λ2=2.43/2≈1.21. Halfway (on the logarithmic
scale) between them, there is a certain speed-up for L=10s,
see Figure 5. Here, the measured value of λ4≈60.68 is
practically equal to the previously used estimated one
(62.5). For λ8≈30.34, there is an acceptable speed-up of
5.27, and probably this is the most economical working
point of the system, as the further increase of the number
of LPs (and CPU cores) does not significantly improve the
performance.

Figure 4 shows the speed-up for L = 1s lookahead. Here,
the highest speed-up of the value 1.92 can be observed
when there are 4 LPs executed by 4 cores. Here sequential
λ≈24.14 results in λ4≈6. Now, we are on the theoretical
boundaries: λ24≈1 and the simulation in 24 LPs requires
nearly twice longer execution time than the sequential
simulation.

Figure 9 shows the relative speed-up in the function a λN.
The data series of a given color belong to a given value of
L. Note that as λN is decreasing in the function of N, if we
consider the values of N in ascending order: (2, 4, 6, 8, 12
and 24) then we need to look at the data series from the
right to left.

0

0,2

0,4

0,6

0,8

1

1,2

0,1 1,0 10,0 100,0 1000,0 10000,0

λN=λ/N

R
el

at
iv

e
sp

ee
d-

up

L=1000s
L=100s
L=10s
L=1s
L=0,1s

Figure 9. Relative Speed-up in the Function of λN for Dif-

ferent Values of L, and for N=24, 12, 8, 6, 4, 2

On the basis of our experimental results summarized in
Figure 9, we can confirm the findings of (Varga et. al.
2003) that:

• If λ is in the order of a couple times 100 or higher,
then we may expect good speed-up. It may be nearly
linear (that is the relative seed-up is close to 1) even
for higher number of LPs (we checked it until 24) if
λN (that is λ divided by the number of LPs) is also at
least in the order of a couple of hundreds.

• If λ is in the order of a couple of times 10, we may

experience fair speed-up for a number of processors
until λN (that is, λ divided by the number of LPs) also
remains in this order (or at least λN is higher than a
couple times 1).

• No speed-up is possible if λ or λN (that is, λ divided by
the number of LPs) is less than 1.

CONCLUSIONS

In this paper we have experimentally verified that a cou-
pling factor of λ >> 1 is a necessary precondition of get-
ting a good speed-up with conservative parallel simula-
tion. We have used a closed queueing network as simula-
tion model, and run it on up to 24 CPU cores. The results
confirm that with our model, a λN =λ/N (N being the num-
ber of LPs) value near or below 1 practically prohibits
good parallel performance. The 10..100 range of λN can
provide an acceptable speed-up, and there is a high chance
for a good speed-up if λN is above that range.

One has to keep in mind that λ only helps to determine
whether a given lookahead is enough for a given simula-
tion model and software/hardware environment, so it can-
not guarantee good speed-up. Speed-up can still be ad-
versely affected by other factors such as excessive mes-
sage traffic between LPs as a result of partitioning.

However, the criterion for λ provides a quick and conven-
ient way to determine whether it makes sense to experi-
ment with parallelizing a particular simulation model or
not, before actually investing work in the parallelization.

We conclude that the recommended methods are worth
further studying.

ACKNOWLEDGEMENT

The authors of this paper would like to express their
thanks to Éva Szabó, who conducted the measurements
used in this paper.

REFERENCES

Fujimoto, R. M. 1990. Parallel Discrete Event Simulation. Com-
munications of the ACM 33 no. 10, 31-53

Lencse, G. 1998. "Efficient Parallel Simulation with the Statisti-
cal Synchronization Method" Proceedings of the Communi-
cation Networks and Distributed Systems Modeling and
Simulation (CNDS'98) (San Diego, CA. Jan. 11-14). SCS In-
ternational, 3-8.

Lencse, G. 1999. "Applicability Criteria of the Statistical Syn-
chronization Method" Proceedings of the Communication
Networks and Distributed Systems Modeling and Simulation
(CNDS'99) (San Francisco, CA. Jan. 17-20). SCS Interna-
tional, 159-164.

Lencse, G. 2002. "Parallel Simulation with OMNeT++ using the
Statistical Synchronization Method" Proceedings of the 2nd
International OMNeT++ Workshop (Jan. 8-9, 2002, Techni-
cal University Berlin, Berlin, Germany) 24-32.

Pongor, Gy. 1992. "Statistical Synchronization: a Different Ap-
proach of Parallel Discrete Event Simulation". Proceedings
of the 1992 European Simulation Symposium (ESS'92) (Nov.
5-8, 1992, The Blockhaus, Dresden, Germany.) SCS Europe,
125-129.

Pongor, Gy. 1992. "Statistical Synchronization: a Different Ap-
proach of Parallel Discrete Event Simulation". Proceedings
of the 1992 European Simulation Symposium (ESS'92) (Nov.
5-8, 1992, The Blockhaus, Dresden, Germany.) SCS Europe,
125-129.

Varga, A., Y. A. Sekercioglu and G. K. Egan. 2003. "A practical
efficiency criterion for the null message algorithm". Pro-
ceedings of the European Simulation Symposium (ESS 2003),
(Oct. 26-29, 2003, Delft, The Netherlands.) SCS Interna-
tional, 81-92.

Sekercioglu, Y. A., Varga, A. and Egan, G. K. Egan, 2003. "Par-
allel Simulation Made Easy with OMNeT++". Proceedings
of the European Simulation Symposium (ESS 2003), Oct. 26-
29, 2003, Delft, The Netherlands.

Varga, A. and Hornig, R., 2008. "An overview of the OMNeT++
simulation environment", Simutools '08: Proceedings of the
1st international conference on Simulation tools and tech-
niques for communications, networks and systems & work-
shops. March 7, 2008, Marseille, France.

AUTHOR BIOGRAPHY

GÁBOR LENCSE received his M.Sc. in electrical engi-
neering and computer systems at the Technical University
of Budapest in 1994, and his Ph.D. in 2001 from the same
university. His area of research is simulation methodology
and parallel discrete event simulation. His academic inter-
ests include the acceleration of the simulation of informa-
tion and communication technology systems. Since 1997,
he has been affiliated with the Széchenyi István University
in Győr, where he lectures on computer networks, net-
working protocols and Linux as Associate Professor. He is
a founding member of the Multidisciplinary Doctoral
School of Engineering, Modelling and Development of
Infrastructural Systems at the Széchenyi István University.
He performs R&D in the field of the simulation of com-
munication systems for the Elassys Consulting Ltd. since
1998. Dr Lencse has been working part time at the Buda-
pest University of Technology and Economics (the former
Technical University of Budapest) since 2005, where he
teaches computer architectures.

ANDRÁS VARGA received his M.Sc. in electrical engi-
neering and computer systems from the Technical Univer-
sity of Budapest in 1994. Between 1994 and 1998 he pur-
sued PhD studies at the same university, but went to the
industry before completing the PhD. Between 2003 and
2005, he spent altogether more than a year at CTIE,
Monash University, Melbourne as a visiting research fel-
low, where he was performing research on parallel simula-
tion of large telecommunication networks, and working
towards the PhD degree. His field of interest is the simula-
tion of telecommunication networks, and he is the archi-
tect and main developer of the widely used OMNeT++
network simulation software. Currently he works at
OpenSim Ltd. that he founded for commercializing the
OMNeT++ software.

