
Table of Contents
Examination of Disk...2
Master Boot Record (MBR)...2

How to find the beginning of a partition..3
NTFS..8

Volume Boot Record..8
Master File Table ($MFT file)...13

STANDARD_INFORMATION block (0x10)..16
FILE_NAME (0x30)...17
Resident DATA (0x80)..18
An example to resident file...19
Non resident DATA (0x80)...26
Example to non resident DATA..26

Metasploit timestomp..36
Slack space (Metasploit slacker)..41

Microsoft Dynamic disk (Simple volume)...53
Structure of the VBLK blocks...62
VBLK partition descriptor (0x33)...63

Microsoft dynamic disks (RAID0 stripe)...65
VBLK Disk descriptor (0x34)...73
VBLK Component descriptor (0x32)..77
Reassemble of a file...79

Microsoft dynamic disk RAID5...89

Examination of Disk

The hard disk is organized to sectors in hardware level. The sector size is usually 512 (0x200) bytes,
some newer disks has the sector size of 4096 (0x1000).

Master Boot Record (MBR)

When we open the disk with a hex editor in the first (to be more exact in the zeroth) sector we are
going to find the Master Boot Record. It is always 512 (0x200) bytes long. The First 446 (form 0
until 0x1BD) bytes of it contains the bootstarp code. For us it is not really important now. After it
comes four 16 (0x10) bytes long partition entries. After these partition entries there is a 2 (0x02)
bytes long constant magic value 0x55AA, always this marks the end of the Master Boot Record. On
the next picture you can see the structure of the MBR and the structure of the partition entries:

Some important partition types (0x04): 0x07 NTFS, 0x04 FAT16, 0x0B FAT32 0x0C FAT32 0x82
Linux swap 0x83 linux nativ
Possible values of bootable byte (0x00): 0x80 yes, 0x00 not

From the partition entries today the LBA notation used to be used, because of the disk sizes, so we
will deal mainly with those values. The bytes ftom 0x08 to 0x0B shows to us the start of the
partition (it is marked with light blue color on the previous picture). It is a little endian number so
you should read the bytes in opposite order.

How to find the beginning of a partition

Let us see in a real example, how we can find the start of a partition. Attach the
evidenceNTFSresident.vhd to your examination virtual machine, then start it.

0 1 2 3 4 5 6 7 8 9 A B C D E F

Bootable start of the partition in CHS
Partition

type
End of the partition in CHS

Start of partition in sectors (LBA
notation)

Length of partition in sectors (LBA
notation)

0 1 2 3 4 5 6 7 8 9 A B C D E F
0x0000
0x0010
0x0020
0x0030
0x0040
0x0050
0x0060
0x0070
0x0080
0x0090
0x00A0
0x00B0
0x00C0
0x00D0
0x00E0
0x00F0
0x0100
0x0110
0x0120
0x0130
0x0140
0x0150
0x0160
0x0170
0x0180
0x0190
0x01A0
0x01B0
0x01C0
0x01D0
0x01E0
0x01F0 55 AA

BOOT Starp Code

First
Partition Entry second
Partition Entry third
Partition Entry fourth
Partition Entry

Log in, then open a terminal. Most of our tool requires root privileges because it want to reach the
disk in low level, so first we should become root:

sudo -s

then we list the disks attached to our environment:

fdisk -l

In this case the sdb disk is our attached disk, and it has sector size of 512 bytes as usual. Let us open
it with a hex editor. If it is not installed yet you can install one by the following command:

apt-get install hexedit

then we start the application with the command

hexedit

The application asks you, which file to open. We should open the /dev/sdb file:

Then we get the file opened. Here we should search for the first partition entry, it will start at the
0x01BE position:

The partition entry now is the following:

00 02 03 00 07 FE 3F 81 80 00 00 00 00 E8 1F 00

We need the start of the partition what is 80 00 00 00. It is in little endian notation so the value will
be: 0x00000080.

This value is given is sectors. We know the sector size from the fdisk -l command, it was 512 bytes.
So the starting position of the partition is 0x80 * 512 = 128 * 512 = 65536 = 0x1000

We can jump to this pisition by pressing ctrl-g, then type this value:

There we will find the beginning of an NTFS partition

NTFS

Volume Boot Record

• Now let us see how the NTFS volume builds up. The beginning of the volume contains a
short relative jump (marked with green 0x00..0x01), to jump over the configuration
information (EB XX). The length of the configuration information usually 0x54 bytes long,
but never forgot, the jump instruction jumps from the end of the jump instruction always. So
if it is 0x54 bytes long you will see an EB 52 instruction there.

• After it at the 0x02 position comes a NOP (0x90) instruction.
• The next important peace of information for us is the length of sectors given in bytes

(marked with yellow at position 0x0B..0x0C) as we were talked about it earlier, it is
practically always 512 (0x0200) bytes, and given in little endian notation so you will see it
as 0x0002.

• Then comes the Cluster length (marked with light blue at position0x0D). It is measured in
sectors. The default cluster length of the cluster is 4096 (0x1000) bytes.

• The next very important information we need is the start position of the $MFT file (marked
wit red at the position 0x30..0x37). Practically the $MFT file (Master File Table) describes
the whole filesystem, the directory structure, every files, timestamps, clusters used by it and
so on. It means if we want to read the filesystem we should parse this file. This number is
again in little endian format, and it is measured in cluster, not in blocks now, so if you see
there for example 0x5554010000000000 it means the $MFT file will start at cluster
0x015455. This offset is measured from the beginning of the volume.

Let us examine it on the previous example:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x0000

NOP OEM ID (NTFS)

0x0010

0x0020

0x0030

0x0040

0x0050
0x0060
0x0070
0x0080
0x0090
0x00A0
0x00B0
0x00C0
0x00D0
0x00E0
0x00F0
0x0100
0x0110
0x0120
0x0130
0x0140
0x0150
0x0160
0x0170
0x0180
0x0190
0x01A0
0x01B0
0x01C0
0x01D0
0x01E0
0x01F0 55 AA

Short Jump
(EB XX) the
jump length

may vary

Bytes per
sector

Sector
s per
Cluste

r

Reserved
Sectors

Always 0 Not used ?
Media
Descri

ptor
Always 0

Sectors per
track

Number of
Heads

Hidden Sectors

Not used by NTFS ? Not used by NTFS ? Total number of sectors

Start Cluster of $MFT fájl Start Cluster of $MFTMirr fájl

Clusters Per File Record
Segment

Clusters Per Index Block Volume Serial Number

Checksum

BOOT Starp Code

The block size marked with 0002. As we remember it should be treated as little endian number
0x0200 = 512 bytes.
Then let's check the cluster size marked with yellow 08. It means the cluster size is the default 0x08
* 0x0200 = 8 * 512 = 4096 bytes.
The next piece of information we need the start position of the $MFT file. It is marked with red
5554010000000000. Because it is a little endian value the position is 0x015455, and it is measured
in clusters so we should multiply it by 4096 (0x1000). We get: 0x15455000. But it is measured from
the beginning of the partition not from the beginning of the disk, so we should add to it 0x10000
(the NTFS volume starts at that position). So finally we get 0x15465000. If we jump to this position
by pressing ctrl-g then typing 0x15465000 we arrive to the beginning of the $MFT file.

Master File Table ($MFT file)

The entries in the $MFT builds up on the following way:

One entry is always 1024 bytes (0x400) bytes long.

• The entry starts with a header what is always 42 bytes long (0x2A)
• The first four bytes of the entry (0x00..0x03) in this header is a magic value: FILE

(46494C45)
• Then first important value for us now is the offset to the first attribute block

(marked with dark blue at the position 0x14..0x15) it is a little endian number again
so if you see here 3800 it means 0x38.

• Immediately after it comes the flags (marked with light blue at position 0x16..0x17)
it is also a little endian mumber. The two bits what we should know now are the 0.th
bit if it is 1 the file is allocated, if 0 the file is deleted. The 1.th bit if 1 then the
entry is a directory, if 0 then the entry is a file.

• The next four bytes (marked with dark blue at position 0x18..0x1B) means the real
size of this entry. Again it is a little endian number so if you find here 98010000
then it means 0x0198

• The nex four bytes (marked with light blue again at position 0x0C..0x0F) is the
allocated size of this entry. It is practocally alvays 1024 bytes (0x1000).

• From offset given at the position 0x14..0x15 we will find the first attribute block, and there
will be many other attribute blocks. The structure of them depends on their types, but there
are some common thing, they always start with a 16 (0x10) bytes long attribute header:

• The first four bytes of these headers gives us the type of the block, it is in little
endian number.

• The second four numbers gives us the length of the block, it is also in little endian
notation.
By te help of these two values we can travel through all the blocks in the entry.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x0000 MAGIC value (FILE) $Logfile Sequence Number (LSN)

0x0010 Real size of the FILE record

0x0020 File reference to the base FILE record

0x0030
0x0040

B L O C K 1
0x0050
0x0060
0x0070
0x0080
0x0090
0x00A0

B L O C K 20x00B0
0x00C0
0x00D0
0x00E0 B L O C K 30x00F0

: :
: :
: :
: :
: :

0x0350

B L O C K n0x0360
0x0370
0x0380
0x0390

B L O C K n+1
0x03A0
0x03B0
0x03C0
0x03D0
0x03E0
0x03F0

Offset to
update

sequence

Size of
update

sequence

sequence
number

(incremented
when the
entry is

allocated or
unallocated)

link count :
number of
directories

have entries
for this record

(hard links
increment)

Offset to first
Block

(Attribute)

Flags 0. bit :
1 allocated 0
deleted; 1. bit
: 1 directory 0

fájl

Allocated size of the FILE
record

Next Attribute
Id

STANDARD_INFORMATION block (0x10)

This block is always resident, and contains the DOS flags, Modify Access Create and Entry times of
the file. These time informations can not be hundred percently trusted, because some evidence
eliminator applications for example the metasploit timestomp modify these entries.

The values which are important for us now are:
• 0x00..0x03 : Attribute type, in case of Standard information it is 10000000
• 0x04..0x07 : the length of this attribute entry.
• 0x08 : resident flag (0 means resident data, 1 means non resident). The standard information

entry is always resident
• 0x09 : Length of stream name, most of the time it is zero, because it is not stored, if standard

attribute
• 0x0A..0x0B : offset to stream name

• 0x18..0x1F : creation time it is given in windows 64 bit time format what is defined as: 10^-
7 secundum intervals from 0h 1-Jan 1601. You can make it readable by the help of
w32tm /ntte command. For example if it is 8A A7 81 D8 9E 18 CC 01 one should use
the command w32tm /ntte 0x01CC189ED881A78A. It is easy to recognise the
windows 64 bit time format, an0 byte number, always ends with 01. most of the time four
three times used to be seen.

• 0x20..0x27 : Last modofication time of the file given in windows 64 bit time format.
• 0x28..0x2F : Last modification time of the MFT entry given in windows 64 bit time format.
• 0x30..0x37 : Last access time of the file. Again it is given in windows 64 bit time format.
• 0x38..0x3B : DOS file permissions.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x0000

Flags

0x0010

Creation Time in windows 64 bit time format

0x0020
Last Modification Time in windows 64 bit time format

0x0030
Last Access Time in windows 64 bit time format

0x0040 Version number Class ID Owner ID
0x0050 Security ID Quota charged Update Sequence Number (UCN)

Attribute type (Standard
Information10000000)

Length of this attribute entry
including the header

Resid
ent
flag

Lengt
h of
strea
m

name

Offset to
stream name

Attribute
identifier

Length of data from the end
of header

Offset to
attribute
content

Padding 00, if
length stream
name not 0
after it the

stream name

Last Modification Time of the File Record in windows 64
bit time format

DOS File Permissions
(flags)

Maximum number of
versions

FILE_NAME (0x30)

He of course you can find the file name, and again we will find here four time stamps. It is more
difficult to

• 0x00..0x03 : Attribute type, in case of Standard information it is 10000000
• 0x04..0x07 : the length of this attribute entry.
• 0x08 : resident flag (0 means resident data, 1 means non resident). The file_name entry is

always resident
• 0x09 : Length of stream name, most of the time it is zero, because it is not stored, if standard

attribute

• 0x20..0x27 : creation time it is given in windows 64 bit time format what is defined as: 10^-
7 secundum intervals from 0h 1-Jan 1601. You can make it readable by the help of
w32tm /ntte command. For example if it is 8A A7 81 D8 9E 18 CC 01 one should use
the command w32tm /ntte 0x01CC189ED881A78A. It is easy to recognise the
windows 64 bit time format, an0 byte number, always ends with 01. most of the time four
three times used to be seen.

• 0x28..0x2F : Last modofication time of the file given in windows 64 bit time format.
• 0x30..0x37 : Last modification time of the MFT entry given in windows 64 bit time format.
• 0x38..0x3F : Last access time of the file. Again it is given in windows 64 bit time format.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x0000

Flags

0x0010

MFT record number of the parent directory

0x0020 Creation Time in windows 64 bit time format Last Modification Time in windows 64 bit time format

0x0030 Last Access Time in windows 64 bit time format

0x0040 Allocated size of index Real size of index

0x0050 Flags Reparse value Filename in unicode

0x0060 so the length of this part is the double of the stored filename length
0x0070

Attribute type (Filename
30000000)

Length of this attribute entry
including the header itself

Resid
ent
flag

Lengt
h of
strea
m

name

Offset to
stream name

Attribute
identifier

Length of data from the end
of header

Offset to
attribute
content

Padding 00, if
length stream
name not 0
after it the

stream name

Last Modification Time of the File Record in windows 64
bit time format

Filena
me

length

Filena
me

name
space

Resident DATA (0x80)

This value can be resident or non resident. We start with the structure of the resident one, in this
case we will find here the content of the file.

• 0x00..0x03 : Attribute type, in case of Standard information it is 10000000
• 0x04..0x07 : the length of this attribute entry.
• 0x08 : resident flag (0 means resident data, 1 means non resident). The DATA addribute can

be resident or non resident, first we deal with the resident files.

• 0x10..0x13 : Real size of the file.
• 0x14..0x17 : offset to the file content

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x0000

Flags

0x0010
Real size of data Offset to file content

0x0020

File Content0x0030
0x0040
0x0050

Attribute type (Data
80000000)

Length of this attribute entry
including the header

Resid
ent
flag

Lengt
h of
strea
m

name

Offset to
stream name

Attribute
identifier

An example to resident file

The fist some entry in the $MFT file are system reserved. Our files start after those. Let us find one
resident file.

Just go down, until you find the first non system entry (we will find it at position 0x15465000 + 35
* 0x400 = 0x1546DC00):

• After we found the MFT entry of the file we can start to parse it. First we should find the
offset of the first attribute entry. It is at the position 0x14..0x15 marked with blue color. It
has a value of 3800 and it is a little endian number so it is 0x38.it means the first attribute
will start at the positon 0x38.

• Really from the 0x38 position we find a standard:information block we know it from the
first four what bytes are 10000000 it is marked with light blue on the picture.

• The next four bytes (0x3C..3F marked with dark blue) is the length of this attribute now the
value of it is 60000000 what is little endian number so 0x60 bytes. It means the second
attribute will start at the position 0x38 + 0x60 = 0x98

• The next byte (0x40 marked with green) is the resident flag it is now 0, what means resident
so this attribute is stored in the NTFS entry. It is not suprysing, because the standard
information is always resident.

• We find here the four timestamps (0x50..0x6F marked with grey). First is the modification
time. Now it is: 8AA781D89E18CC01 we can read the value by typing w32tm /ntte
0x01CC189ED881A78A The second is the last modification time, now it is
7EED04EA9E18CC01 again one can make it readable by typing w32tm /ntte
0x01CC189EEA04ED7E. The next timestamp is the last modification time of the MFT

$Mft 0
$MftMirr 1
$LogFile 2
$Volume 3
$AttrDef 4
$ 5
$Bitmap 6
$Boot 7
$BadClus 8
$Secure 9
$Upcase 10
$Extend 11
reserved 12-
$Quota 24
$ObjId 25
$Reparse 26
$Rmetadata 27
$Repair 28
$txflog 29
$txf 30
$tops 31
$txflogblf 32
$txtflogcontainer 33
$txtflogcontainer 2 34

entry, the value of it now 7EED04EA9E18CC01 again to see the value run the w32tm
/ntte 0x01CC189EEA04ED7E command. The last one is the last access time of the
file, now it is 8AA781D89E18CC01 again if we want to read it run the w32tm /ntte
0x01CC189ED881A78A command. Again I want ot mention some evidence eliminator
(like the actual version of measploit timestomp) deletes or modifies only this value.

• At the position 0x98 we find a filename attribute because the four first bytes are 30000000
it is marked with light blue on the picture.

• The next four bytes (0x9C..0x9F marked with dark blue) shows us the length now the value
of it is 68000000. It is a little endian number so the value 0x68. It means the next attribute
will start at 0x98 + 0x68 = 0x0100

• The next byte (0xA0 marked with green) is the resident flag it is 0 what means resident so
this attribute is stored in the NTFS entry. It is not suprysing, because the standard
information is always resident.

• We find here the four timestamps (0xB8..0xD8 marked with grey). First is the modification
time. Now it is: 8AA781D89E18CC01 we can read the value by typing w32tm /ntte
0x01CC189ED881A78A The second is the last modification time, now it is
8AA781D89E18CC01 again one can make it readable by typing w32tm /ntte
0x01CC189ED881A78A. The next timestamp is the last modification time of the MFT
entry, the value of it now 8AA781D89E18CC01 again to see the value run the w32tm
/ntte 0x01CC189ED881A78A command. The last one is the last access time of the
file, now it is 8AA781D89E18CC01 again if we want to read it run the w32tm /ntte
0x01CC189ED881A78A command. Again I want ot mention some evidence eliminator
(like the actual version of measploit timestomp) deletes or modifies only this value.

• At the position 0x0100 we find a Data attribute because the first four bytes of it
(0x0100..0x0103) are 80000000 it is marked with light blue on the picture

• The next four bytes (0x104..0x0107) shows us the length of this attribute, what is now
30000000, it means 0x30 bytes.

• The next byte (0x109 marked with green) is the resident flag it is now 0, what means
resident so this attribute is stored in the NTFS entry.

• At the position 0x110..0x113 marked with yellow on the picture we find the length of the
data.

• After it the next four bytes (0x114..0x117 marked with black on the picture) shows the offset
of the file content, it is 18000000 now. It is a little endian number so 0x18. The content of
file will start at 0x118. 0x1546DC00 + 0x118 = 0x1546DD18.

• From the position 0x1546DD18 we should read 0x16 bytes that is the content of the file
marked with red.

Non resident DATA (0x80)

Example to non resident DATA

Let us see in a real example, how we can find the start of a partition. Attach the
evidenceNTFSnonresident.vhd to your examination virtual machine, then start it. This vhd contains
only one file called as a.txt with a lot of letter “a” as content.

It is a new disk, so we start the process from the beginning, it will be good, to check if we
memorized the partition table well.

First we need root right so run the sudo -s command, and give your password, to become root.

Then we run the fdisk -l command, to see the disks, and the block size of it.

For me this disk is the sdc the relevant part of the fdisk -l is on the next picture, as we can see the
unit size is 512 again:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x0000

Flags

0x0010 Starting VNC of the runlist Last VCN of the runlist

0x0020 Padding Allocated size of the attribute (file)

0x0030 Real size of the attribute (file) Initialized data size
0x0040 Compressed size
0x0050

Cluster Chains0x0060
0x0070

Attribute type (Data
80000000)

Length of this attribute entry
including the header

Resid
ent
flag

Lengt
h of
strea
m

name

Offset to
stream name

Attribute
identifier

Offset to the
data runs

Compression
Unit Size

then we start the hexedit application by typing hexedit (if someone like the color output then can
start it as hexedit --color then the different kind of characters for example printable characters, nnon
printables are marked with different color):

We type the name of our disk for me /dev/sdc

At the beginning of the disk there will be the Master Boot Record (MBR):

We can find the first partition entry. It starts at position 0x1BE marked with blue.
The start position of the first partition is 80000000. Again it is little endian so 0x80. It is given in
blocks so we multiply it by 512 (0x200) and we get 0x10000. To see this partition we should jump
there by pressing ctrl-g then type 0x10000:

There we find the Volume Boot Record again. We will need the following three informations:

• 0x0B..0x0C (marked with yellow) The sector size given in bytes (we already know it should
be 512 = 0x200 bytes, but check it for the safety)

• 0x0D (marked with blue): The size of cluster given in sectors. Now it is 0x08 so the size of
the cluster is 0x200 * 0x08 = 0x1000 = 4096 bytes.

• 0x30..0x37 (marked with red): the starting position of the $MFT given in clusters and
measured from the start of the volume. The value here is 5554010000000000 So the position
will be 0x015455 * 0x1000 + 0x10000 = 0x15465000. We can jump there by pressing ctrl-g
then type 0x15465000

Here starts the $MFT file, we recognize it from the “FILE” magic value:

As we remember the first values are system values so we jump to the 35th entry. One entry is
always 1024 (0x400) bytes long. So we should go to 0x15465000 + 35 * 0x400 = 0x1546DC00.

We can jump there by pressing ctrl-g and type 0x1546DC00

• 0x14..0x15 (marked with dark blue) means the offset to the first attribute. Now it is 3800
what means 0x38 because it in little endian notation

• 0x38..0x3B (marked with light blue) is the type of the attribute 10000000 means 0x10 what
is the standard information block

• 0x3C..0x3F (marked with dark blue) is the length of this attribute. Now it is 60000000 what
means 0x60 bytes, so the next attribute going to start at the position 0x38 0x60 = 0x98

• 0x40 (marked with green) is the resident flag. It is 0 obviously, because the standard
information block is always resident.

• 0x50..0x6F (marked with grey) contains the time stamps.
• First is the modification time. Now it is: 0A80552AA018CC01 we can read the value

by typing w32tm /ntte 0x01CC18A02A55800A
• The second is the last modification time, now it is 1C5AFB7AA018CC01 again one

can make it readable by typing w32tm /ntte 0x01CC18A07AFB5A1C.
• The next timestamp is the last modification time of the MFT entry, the value of it

now 1C5AFB7AA018CC01 again to see the value run the w32tm /ntte
0x01CC18A07AFB5A1C command.

• The last one is the last access time of the file, now it is 0A80552AA018CC01 again
if we want to read it run the w32tm /ntte 0x01CC18A02A55800A command.

• Again I want ot mention some evidence eliminator (like the actual version of
measploit timestomp) deletes or modifies only these values.

• 0x98..0x9B (marked with light blue) : contains the second attribute. The value of it is
30000000 means 0x30 file_name attribute.

• 0x9C..0x9F (marked with dark blue) is the length of this attribute. The value of it now is
68000000, but it is given in little endian format, what means 0x68. So the third attribute
starts at 0x98 0x68 = 0x0100

• 0xA0 (marked with green) is the rsident flag. Again this attribute is always resident so not
suprising we get a value 0 here.

• 0xB8..0xD8 : (marked with grey) contains the time stamps.
• First is the modification time. Now it is: 0A80552AA018CC01 we can read the value

by typing w32tm /ntte 0x01CC18A02A55800A
• The second is the last modification time, now it is 0A80552AA018CC01 again one

can make it readable by typing w32tm /ntte 0x01CC18A02A55800A.
• The next timestamp is the last modification time of the MFT entry, the value of it

now 0A80552AA018CC01 again to see the value run the w32tm /ntte
0x01CC18A02A55800A command.

• The last one is the last access time of the file, now it is 0A80552AA018CC01 again
if we want to read it run the w32tm /ntte 0x01CC18A02A55800A command.

• 0x0100..0x0103 (marked with light blue) : here starts the third attribure. Now it has a value
80000000 means 0x80 DATA.

• 0x0104..0x0107 (marked with dark blue) : the length of this attribute now contains
48000000 what means 0x48 bytes. So the next attribute starts at 0x0100 0x48 = 0x0148

• 0x0108 (marked with green) : is the resident flag, what is now 1, because we have a non
resident file.

• 0x0120..0x0123 (marked with dark blue) : is the offset where the cluster chains definition
going to start. Now it has a value 40000000 what means 0x40. So the description of the
cluster chain starts at 0x0140 (marked with black) : here starts the cluster chain. Now it has
a value 0x31 what should be interpreted on the following way: the first number 3 (0x03)
means the start cluster is stored on 3 bytes. The second number 1 (0x01) means the number
of the clusters continuously occupied by the file. First the number of clusters is stored so we
should read the next one byte

• 0x0141 (marked with yellow) : now it is 0x08 so the first cluster chain occupies 0x08
continuous clusters. If we calculate 0x08 * 0x1000 = 0x8000 = 32768 bytes. The start
cluster is stored on three bytes as we remember so we should read the next three bytes:

• 0x0142..0x0144 (marked with red) : is the start cluster of the file measured from the
beginning of the volume. Now it has the value 80FE01 means 0x01FE80. So the file will
begin at the position 0x01FE80 * 0x1000 + 0x10000 = 0x1FE90000.

• 0x130..0x138 (marked with purple) : is the real size of the file. It has a value
807F000000000000 it is in little endian so the value is 0x7F80 so the filesize is 32640 bytes.
We can see that it is smaller than we calculated from the number of clusters so the last cluter
will not be fully utilized.

Now let us jump to the position 0x1FE90000 by pressing ctrl-g then type 0x1FE90000, and really
there we will find the content of the file a lot of leter “a” and sometimes a carrige return line feed:

to extract the content of the file we can use for example a simpel dd command as:

dd if=/dev/sdc of=./a.txt bs=1 skip=535363584 count=32640

after it we can open the newly restore a.txt by any text editor like nano, gedit, vi...

Metasploit timestomp

The timestomp command in metasploit capable to delete the time values from the standard
information block in the $MFT file, to make more difficult to analyze an evidence disk. He current
version of the tool deletes only the values from the standard information block, so we can get some
time value back by the help of the times in the filename block as it is shown in the next example

to try it attach the evidenceTimeStomp.vhd to your examination machine (for me it is attached as
/dev/sde) then open it with a hexeditor. As usually the first sector contains the MBR we can start to
search for the NTFS partition on the already well known way:

We can find the first partition entry. It starts at position 0x01BE marked with blue.
The start position of the first partition is 80000000. Again it is little endian so 0x80. It is given in
blocks so we multiply it by 512 (0x200) and we get 0x10000. To see this partition we should jump
there by pressing ctrl-g then type 0x10000:

• 0x0B..0x0C (marked with yellow) The sector size given in bytes (we already know it should
be 512 = 0x200 bytes, but check it for the safety)

• 0x0D (marked with blue): The size of cluster given in sectors. Now it is 0x08 so the size of
the cluster is 0x200 * 0x08 = 0x1000 = 4096 bytes.

• 0x30..0x37 (marked with red): the starting position of the $MFT given in clusters and
measured from the start of the volume. The value here is 5554010000000000 So the position
will be 0x015455 * 0x1000 + 0x10000 = 0x15465000. We can jump there by pressing ctrl-g
then type 0x15465000

Here starts the $MFT file, we recognize it from the “FILE” magic value:

As we remember the first values are system values so we jump to the 35th entry. One entry is
always 1024 (0x400) bytes long. So we should go to 0x15465000 + 35 * 0x400 = 0x1546DC00.

We can jump there by pressing ctrl-g and type 0x1546DC00

• 0x14..0x15 (marked with dark blue) means the offset to the first attribute. Now it is 3800
what means 0x38 because it in little endian notation

• 0x38..0x3B (marked with light blue) is the type of the attribute 10000000 means 0x10 what
is the standard information block

• 0x3C..0x3F (marked with dark blue) is the length of this attribute. Now it is 60000000 what
means 0x60 bytes, so the next attribute going to start at the position 0x38 0x60 = 0x98

• 0x40 (marked with green) is the resident flag. It is 0 obviously, because the standard
information block is always resident.

• 0x50..0x6F (marked with grey) contains the time stamps.
• First is the modification time. Now it is: 00D85EAC3A000000 we can read the value

by typing w32tm /ntte 0x0000003AAC5ED800
• The second is the last modification time, now it is 00D85EAC3A000000 again one

can make it readable by typing w32tm /ntte 0x0000003AAC5ED800.
• The next timestamp is the last modification time of the MFT entry, the value of it

now 00D85EAC3A000000 again to see the value run the w32tm /ntte
0x0000003AAC5ED800 command.

• The last one is the last access time of the file, now it is 00D85EAC3A000000 again
if we want to read it run the w32tm /ntte 0x0000003AAC5ED800 command.

• As we can see this values now are not valid.
• 0x98..0x9B (marked with light blue) : contains the second attribute. The value of it is

30000000 means 0x30 file_name attribute.
• 0x9C..0x9F (marked with dark blue) is the length of this attribute. The value of it now is

68000000, but it is given in little endian format, what means 0x68. So the third attribute
starts at 0x98 0x68 = 0x0100

• 0xA0 (marked with green) is the rsident flag. Again this attribute is always resident so not
suprising we get a value 0 here.

• 0xB8..0xD8 : (marked with grey) contains the time stamps.
• First is the modification time. Now it is: 69B96FBA6F19CC01 we can read the value

by typing w32tm /ntte 0x01CC196FBA6FB969
• The second is the last modification time, now it is 69B96FBA6F19CC01 again one

can make it readable by typing w32tm /ntte 0x01CC196FBA6FB969.
• The next timestamp is the last modification time of the MFT entry, the value of it

now 69B96FBA6F19CC01 again to see the value run the w32tm /ntte
0x01CC196FBA6FB969 command.

• The last one is the last access time of the file, now it is 69B96FBA6F19CC01 again
if we want to read it run the w32tm /ntte 0x01CC196FBA6FB969 command.

• It contains real values so we should continue any investigation with these ones, or
based on this value try to correct the previous time stamp, because only the first
three bytes are zeroed out by the timestomp.

• 0x0100..0x0103 (marked with light blue) : here starts the third attribure. Now it has a value
80000000 means 0x80 DATA.

• 0x0104..0x0107 (marked with dark blue) : the length of this attribute now contains
60000000 what means 0x60 bytes. So the next attribute starts at 0x0100 + 0x60 = 0x0160

• 0x0108 (marked with green) : is the resident flag, what is now 0, so we have a resident file.
• 0x0110..0x0113 (marked with black) : shows the length of the data (file content) it has a

value of 42000000 what means 0x42
• 0x0114..0x0117 (marked with white) : shows the offset to the start of the file content. It has

a value 18000000 what means 0x18 so the content will start at 0x0100 + 0x18 = 0x0118.
The end of it will be at position 0x0118 + 0x42 = 0x015A

• 0x0118.. 0x15A (marked with red) is the content of the file.

Slack space (Metasploit slacker)

As we have already seen the operating system writes the data in the unit of clustes while the disk
works in unit of block. In most of the time in windows environment the cluster size is 4096 bytes
while the block size is 512 bytes. If you write some data to a disk most probably it will not the
integer multiplication of 4096 so the last cluster will not be utilized fully.

What does it mean for us. The last cluster of any file mean contain unused space, what we can use
to hide date (this is done by the metasploit slacker application). Or here you may find data from
some already overwritten file. Some very old windows edition filled it with random data from
memory.

Last cluster of a file:

To test it attach the evidenceSlacker.vhd to your examination machine (for me it is attached as
/dev/sdf) then open it with a hexeditor. As usually the first sector contains the MBR we can start to
search for the NTFS partition on the already well known way:

Cluster

Block

Slack Space
Zeroed outFile content

We can find the first partition entry. It starts at position 0x01BE marked with blue.
The start position of the first partition is 80000000. Again it is little endian so 0x80. It is given in
blocks so we multiply it by 512 (0x200) and we get 0x10000. To see this partition we should jump
there by pressing ctrl-g then type 0x10000:

• 0x0B..0x0C (marked with yellow) The sector size given in bytes (we already know it should
be 512 = 0x200 bytes, but check it for the safety)

• 0x0D (marked with blue): The size of cluster given in sectors. Now it is 0x08 so the size of
the cluster is 0x200 * 0x08 = 0x1000 = 4096 bytes.

• 0x30..0x37 (marked with red): the starting position of the $MFT given in clusters and
measured from the start of the volume. The value here is 5554010000000000 So the position
will be 0x015455 * 0x1000 + 0x10000 = 0x15465000. We can jump there by pressing ctrl-g
then type 0x15465000

Here starts the $MFT file, we recognize it from the “FILE” magic value:

As we remember the first values are system values so we jump to the 35th entry. One entry is
always 1024 (0x400) bytes long. So we should go to 0x15465000 + 35 * 0x400 = 0x1546DC00.

We can jump there by pressing ctrl-g and type 0x1546DC00

Here you find the first file called a q.txt, and if you start to scroll down you will fine many other
files:

First I show the content the r.txt. We search for its cluster chain on the already well known way:

q.txt 1546DC00
d.txt 1546E000
e.txt 1546E400
f.txt 1546E800
g.txt 1546EC00
h.txt 1546F000
i.txt 1546F400
j.txt 1546F800
k.txl 1546FC00
l.txt 15470000

m.txt 15470400
n.txt 15470800
o.txt 15470C00
p.txt 15471000
r.txt 15471400

• 0x14..0x15 (marked with dark blue) means the offset to the first attribute. Now it is 3800
what means 0x38 because it in little endian notation

• 0x38..0x3B (marked with light blue) is the type of the attribute 10000000 means 0x10 what
is the standard information block

• 0x3C..0x3F (marked with dark blue) is the length of this attribute. Now it is 60000000 what
means 0x60 bytes, so the next attribute going to start at the position 0x38 0x60 = 0x98

• 0x40 (marked with green) is the resident flag. It is 0 obviously, because the standard
information block is always resident.

• 0x50..0x6F (marked with grey) contains the time stamps.
• First is the modification time. Now it is: 85B97BF9391ACC01 we can read the value

by typing w32tm /ntte 0x01CC1A39F97BB985
• The second is the last modification time, now it is AED702B43A1ACC01 again one

can make it readable by typing w32tm /ntte 0x01CC1A3AB402D7AE.
• The next timestamp is the last modification time of the MFT entry, the value of it

now AED702B43A1ACC01 again to see the value run the w32tm /ntte
0x01CC1A3AB402D7AE command.

• The last one is the last access time of the file, now it is 85B97BF9391ACC01 again
if we want to read it run the w32tm /ntte 0x01CC1A39F97BB985 command.

• Again I want ot mention some evidence eliminator (like the actual version of
measploit timestomp) deletes or modifies only these values.

• 0x98..0x9B (marked with light blue) : contains the second attribute. The value of it is
30000000 means 0x30 file_name attribute.

• 0x9C..0x9F (marked with dark blue) is the length of this attribute. The value of it now is
68000000, but it is given in little endian format, what means 0x68. So the third attribute
starts at 0x98 0x68 = 0x0100

• 0xA0 (marked with green) is the rsident flag. Again this attribute is always resident so not
suprising we get a value 0 here.

• 0xB8..0xD8 : (marked with grey) contains the time stamps.
• First is the modification time. Now it is: 85B97BF9391ACC01 we can read the value

by typing w32tm /ntte 0x01CC1A39F97BB985
• The second is the last modification time, now it is 85B97BF9391ACC01 again one

can make it readable by typing w32tm /ntte 0x01CC1A39F97BB985.
• The next timestamp is the last modification time of the MFT entry, the value of it

now 85B97BF9391ACC01 again to see the value run the w32tm /ntte
0x01CC1A39F97BB985 command.

• The last one is the last access time of the file, now it is 85B97BF9391ACC01 again
if we want to read it run the w32tm /ntte 0x01CC1A39F97BB985 command.

• 0x0100..0x0103 (marked with light blue) : here starts the third attribure. Now it has a value
80000000 means 0x80 DATA.

• 0x0104..0x0107 (marked with dark blue) : the length of this attribute now contains
48000000 what means 0x48 bytes. So the next attribute starts at 0x0100 0x48 = 0x0148

• 0x0108 (marked with green) : is the resident flag, what is now 1, because we have a non
resident file.

• 0x0120..0x0123 (marked with dark blue) : is the offset where the cluster chains definition
going to start. Now it has a value 40000000 what means 0x40. So the description of the
cluster chain starts at 0x0140.

• 0x0140 (marked with black) : here starts the description of cluster chain. Now it has a value
0x31 what should be interpreted on the following way: the first number 3 (0x03) means the
start cluster is stored on 3 bytes. The second number 1 (0x01) means the number of the
clusters continuously occupied by the file. First the number of clusters is stored so we
should read the next one byte

• 0x0141 (marked with yellow) : now it is 0x01 so the first cluster chain occupies 0x01
continuous clusters. If we calculate 0x01 * 0x1000 = 0x1000 = 4096 bytes. The start cluster
is stored on three bytes as we remember so we should read the next three bytes:

• 0x0142..0x0144 (marked with red) : is the start cluster of the file measured from the
beginning of the volume. Now it has the value 80FE01 means 0x01FE80. So the file will
begin at the position 0x01FE80 * 0x1000 + 0x10000 = 0x1FE90000.

• 0x130..0x138 (marked with purple) : is the real size of the file. It has a value
C804000000000000 it is in little endian so the value is 0x04C8 so the filesize is 1224 bytes.
We can see that it is smaller than we calculated from the number of clusters so the last cluter
will not be fully utilized.

Now let us jump to the position 0x1FE90000 by pressing ctrl-g then type 0x1FE90000, and really
there we will find the content of the file a lot of leter “r” and sometimes a carrige return line feed:

Calculate the slackspace and the positions:

• as we found the file will start at: 0x1FE90000
• the length of the file content is: 0x04C8
• so the real file will finish at 0x1FE904C8
• The data is written to the disk in blocks so 1224 / 512 = 2.39 so 3 blocks will be used by the

file and the remaining 5 blocks will be the slackspace.
• The slack space will start at 0x1FE90000 + 3 * 0x200 = 0x1FE90600
• The end of the slack space will be at the cluster end so 0x1FE90000 + 0x1000 -1 =

0x1FE90FFF (the cluster is 4096 bytes long, but we start the counting from 0 this is why we
substract 1, the position 0x1FE91000 already belongs to the next cluster not to this one).

• The data in the slackspace will be from 0x1FE90600 to 0x1FE90FFF.

Now let us jump to the 0x1FE90600 to see the content of the slackspace:

here we can read that, the nc.zip will be stored in the slack space of d.txt, e.txt... o.txt

Let us try to reassemble the hidden file and read the content of it:

The first file is the d.txt, the MFT entry of it starts at the position 0x1546E000. Lets jump there by
pressing ctrl-g and type this value

Now I do not describe the entry in detail, because that has been done many time, just mark the
important values, and the end result:

The start cluster will be at the position 55E901 what means 0x01E955 * 0x1000 + 0x10000 =
0x1E965000
The file has length 0x04C8 = 1224 bytes again, what means 3 blocks used by the file so the slack
space will start from 0x1E965000 + 3 * 0x200 = 0x1E965600

The length of data in slack space is 5 * 512 = 2560 bytes
0x1E965600 = 513168896
we can extract this data by a simple dd command:

dd if=/dev/sdf bs=1 count=2560 skip=513168896 > /out.xxx

Similarly the remaining parts of the file can be extracted by the following commands:

dd if=/dev/sdf bs=1 count=2560 skip=513172992 >> /out.xxx
dd if=/dev/sdf bs=1 count=2560 skip=513177088 >> /out.xxx
dd if=/dev/sdf bs=1 count=2560 skip=513181184 >> /out.xxx
dd if=/dev/sdf bs=1 count=2560 skip=513185280 >> /out.xxx
dd if=/dev/sdf bs=1 count=2560 skip=513189376 >> /out.xxx

dd if=/dev/sdf bs=1 count=2560 skip=513193472 >> /out.xxx
dd if=/dev/sdf bs=1 count=2560 skip=513197568 >> /out.xxx
dd if=/dev/sdf bs=1 count=2560 skip=513201664 >> /out.xxx
dd if=/dev/sdf bs=1 count=2560 skip=513205760 >> /out.xxx
dd if=/dev/sdf bs=1 count=2560 skip=513209856 >> /out.xxx
dd if=/dev/sdf bs=1 count=2560 skip=513213952 >> /out.xxx

then we can run the file command on linux, to figure aout what type of file it is (it should be a zip
file, we already know it):

then we can extract it:

Microsoft Dynamic disk (Simple volume)

If we use a Microsoft dynamic disk it will has some effects:

• You will still find a Master Boot Record in the firs sector of the disk, but it is only a dummy
MBR, so it most probably points to an invalid position instaed of the real start of the
volume, but sometimes it points to the correct place, so just do not trust in it (mainly it will
incorrect if RAID, or other special features used).

• You will find the dynamic disk header (PRIVHEAD) after the MBR (according to the
descriptions immediately after the MBR, but I used to find it to start at the position 0x0C00).
I would like to emphasize, the numbers here are stored in big endian!

• This header contains a pointer to a configuration data. Ususally it is 1 megabyte before the
end of the disk (recall, you need one megabyte unpartitioned space on the disk to create
dynamic disk).

As we see the first partition record points to 3F000000 what means 0x3F and given in sectors. So

the start of the volume ackording it 0x7E00. Jump there by pressing ctrl-g then type 0x7E00

As we can see now it points to the correct place. But because we can not trust in it let us try to
search it on the way it should be done in case of dynamic disks. First of all jump back to the
beginning of the disk by pressing ctrl-g then type 0. Start to scroll down until you find the
PRIVHEAD magic value:

The PRIVHEAD block builts up as follows

When we apply it to the actual data we get the following

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x0000 PRIVHEAD (Magic value) unknown

0x0010 Timestamp Number
0x0020 Size Size
0x0030

Disk ID GUID string, null padded0x0040
0x0050
0x0060
0x0070

Host ID GUID string, null padded0x0080
0x0090
0x00A0
0x00B0

Disk group ID GUID string, null padded0x00C0
0x00D0
0x00E0
0x00F0 Disk Group Name string, null padded0x0100
0x0110 Unknown Always 0 Logical Disk
0x0120 start Logical Disk Size Configuration
0x0130 Start Configuration Size Number of
0x0140 TOCs TOC size Number of configs Num-
0x0150 ber of logs Size of config Size of
0x0160 Log Disk Signature (or zero) Disk Set
0x0170 GUID Disk Set
0x0180 GUID (?)

major version
always 0x02

Minor version
always 0x0B

we should find the logical disk start value at the position (0x011B..0x0123) we will find here
000000000000003F until this point practically all the numbers were stored in little endian format so
we would interpret it as 3F00000000000000 but in case of dynamic disk configuration block the
numbers are usually stored in big endian format, so this value means simply 0x3F

So the data on the disk starts at the offset 0x3F (it is not surely the start of the volume yet, but we
should add the offset of the volume start to this value).

Now let us try to find where the volume starts on this logical disk. To do it we need the
configuration start value, what is 0000000001FF600. It means the configuration data starts at
0x1FF600 position. It is given in clusters so we must multiply by 512, 0x1FF600 * 0x200 =
3FEC0000. Let us jump there by pressing ctrl-g then type 0x3FEC0000

here we found empty block, but if we start to scroll down a bit we find the configuration data. First
the TOC block:

if we continue to scroll down we find after it there will be the VMDB block

And when continue the scroll we find the part what is the most important for us the VBLK blocks.

Structure of the VBLK blocks

Every VBLK block is 128 (0x80) bytes long, and starts with a 16 (0x10) bytes long header the
structure of it is always the same.

The content of the VBLK block is varying, the following ones can be seen on the disks:

Partition 0x33
Volume 0x51
Component 0x32
Disk 0x34 or 0x44 I have never seen this later one.
Disk group 0x35 or 0x45 I have never seen the late one

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x0000 Magic value (VBLK) Group number

0x0010

Content of the VBLK block
0x0020
0x0030
0x0040
0x0050
0x0060
0x0070

Sequence number (starts
from 4)

Record
number (x of

y)

Number of
records

VBLK partition descriptor (0x33)

Now we will need practically only this information.

Let us check it on our example:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x0000 Magic value (VBLK) Group number

0x0010 Data Length Object ID Partition name

0x0020 Volume name continuation Always 0 Log commit ID

0x0030 Start of partition Volume Offset

0x0040 partition size

0x0050
0x0060
0x0070

Sequence number (starts
from 4)

Record
number (x of

y)

Number of
records

Update
Status

Record type
and flags

Object
ID

length

name
length

length
of

partiti
on
size

Parent
object

ID
length

Parent (a
component)

object ID

Disk
object

ID
length

Disk object
ID

Comp
onent
index
length

Comp
onent
index
(optio
nal)

0x12..0x13 : the type of this VBLK, now it is 0x33 means partition.
0x30..0x37 : the start of the partition within the logical disk now it has a value of 0 so the partition
will start at 0x3F + 0x00 = 0x3F.

Microsoft dynamic disks (RAID0 stripe)

Now we have three disks, evidenceRAID0-disk0b.vhd (/dev/sdh), evidenceRAID0-disk1b.vhd
(/dev/sdi), and evidenceRAID0-disk2b.vhd (/dev/sdj) and we created a stripe volume across these
three disks. Let us try to reassemble this disk.

In this case the disks are divided to stripes. First we should know the stripe size as a basic
information. When we want to write the data to the RAID array we divide it to stripe sizes, and
write it to the disks at the same time.

Let us again try to find where does the NTFS volume starts. If we try again the MBR let see what
we will get

So according to the MBR the partition starts at 0x3F * 0x200 = 0x7E00

If we jump there by pressing ctrl-g then type 0x7E00. There we find the following data

we will get the same result not only on /dev/sdh, but on /dev/sdi, and /dev/sdj as well. So now the
Master Boot Record does not contain valid data on neither of the disks so now we must follow the
technique used last time, to find the valid partition entry from the dynamic disk data. Now we will
need some additional information as well, for example we must know the stripe size, or we should
know the order of the disks as two very important ones.

Start to scroll down, to find the PRIVHEAD block again, it will be at the position 0x0C00

0x011B..0x0122 : The start of the logical disk is at 0x3F again this is not the start of the volume or
partition, but the start of the logical disk, we will have to add this value to the start of the partition.
0x012B..0x0132 : The start of the configuration now it is 0x0FF800 what means 0x0FF800 *
0x200 = 0x1FF00000

press ctrl-g then type 0x1FF00000 to jump to this position. If start to scroll down we will find first
the TOCBLOCK, then the VMDB, after it the VBLK entries.

Among them we can find again the partition entry 0x33

Now we have three disks so we will find three partitions one on every disk. As we see the partitions
will start at the 0x41 position on every disk. And we can see that, the volume offset is 0 so on every
partition the volume will start immediately on the beginning of the partition.

So let us start to calculate the beginning of the NTFS volume, it will be at the position 0x3F + 0x41
= 0x80, what means 0x80 * 0x200 = 0x10000

Let us jump to this position by pressing ctrl-g then type 0x10000

As we can see there is nothing. What happened? Again we have three disks, so check the other two
as well, and really if we check the other disks the /dev/sdj is also empty, but on the /dev/sdi we will
find the NTFS volume start:

So we can see that, it is important to figure out the order of the disks otherwise we can not really
find the information, to do it let us write down the GUID of every disk what we find in the
PRIVHEAD part. In my example it can be found at the position 0x0C00.

Now we know the GUID of every disk:

/dev/sdh : 12ddba7d-93cd-11e0-bcf3-000844444444
/dev/sdi : 12ddba80-93cd-11e0-bcf3-000844444444
/dev/sdj : 12ddba83-93cd-11e0-bcf3-000844444444

Let us which disk does it mean. We can find this information in another VBLK entry what we have
not used yet

VBLK Disk descriptor (0x34)

The disk descriptor has the following structure:

if we check this structure there are two important information the Disk Name, and the Disk GUID.
We already know the Disk GUID from the PRIVHEAD field of every disks so we can pair them.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x0000 Magic value (VBLK) Group number

0x0010 Data Length Object ID Diskname

0x0020

DISK ID (GUID string)
0x0030

0x0040 Always 0 Log commit ID

0x0050 Log commit ID cont.

0x0060
0x0070

Sequence number (starts
from 4)

Record
number (x of

y)

Number of
records

Update
Status

Record type
and flags

Object
ID

length

name
length

Lengt
h of
disk

ID

Altern
ate

name
length

Altern
ate

name

From here we get:

Disk1 : 12ddba7d-93cd-11e0-bcf3-000844444444
Disk2 : 12ddba80-93cd-11e0-bcf3-000844444444
Disk3 : 12ddba83-93cd-11e0-bcf3-000844444444

if we pair it with the other information:

/dev/sdh : 12ddba7d-93cd-11e0-bcf3-000844444444
/dev/sdi : 12ddba80-93cd-11e0-bcf3-000844444444
/dev/sdj : 12ddba83-93cd-11e0-bcf3-000844444444

then we get

Disk1 : /dev/sdh
Disk2 : /dev/sdi
Disk3 : /dev/sdj

So we identified the disks. Now we need the order. This information can be found in the partition

VBLK entries

Here the last peace of information is the component index optional information (if you check the
picture can recognize, it is not exist in the first block, I just marked the “place of it”). Here you can
read the order:

Disk2 : 0
Disk1 : 1
Disk3 : 2

So the order of the disks what we wanted to know:

1. Disk1 : /dev/sdh
0. Disk2 : /dev/sdi
2. Disk3 : /dev/sdj

This is why we found the NTFS entry on the /dev/sdi, thet is the 0th disk.

The other information we should know is the stripe size, let us try to find it as well. This piece of

information can be found in the following VBLK entry:

VBLK Component descriptor (0x32)

Here the one before the last value is the stripe size. Let us check it on our example

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x0000 Magic value (VBLK) Group number

0x0010 Data Length Object ID volume name

0x0020 volume name cont. Volume state Always 0

0x0030 Always 0 Log commit ID Always 0

0x0040 Always 0 stripe size

0x0050
0x0060
0x0070

Sequence number (starts
from 4)

Record
number (x of

y)

Number of
records

Update
Status

Record type
and flags

Object
ID

length

name
length

volum
e

state
length

comp
onent
type
1:strip
e, 2:
basic

or
span,

3:
RAID

length
of

numb
er of

childre
n

Numb
er of

childre
n

length
of

parent
id

Parent (a
volume) ID

Alway
s 0

Lengt
h of

stripe
size

length
of

numb
er of
disks

numb
er of
disks

Here we see it is a component entry (0x32), and the stripe size is stored on 0x01 byte and the value
of it is 0x80. What means, the stripe size now is 0x80 * 0x200 = 0x10000 = 65536 byte (64 kB)

Now we know everything, to reassemble a file on the disk.

Reassemble of a file

Let us check the NTFS entry, and search the first non system file. As you remember the NTFS
volume begins on disk /dev/sdi at the position 0x10000

0x0B..0x0D : As we can see here the block size is 0x0200 (as usual) and one cluster contains 0x08
blocks (as usual). So the cluster size is 0x0200 * 0x08 = 0x1000 = 4096 bytes again
0x30..0x37 : The MFT file starts at 0x01FD00. If you recall the previous calculations, it means the
file starts at 0x01FD00 * 0x1000 + 0x10000 = 0x1FD10000. But this calculation is totally wrong
in this case. If you jump to this position on any of the disks you find there nothing.

Now the calculation works on different way, because instead of writing continuously to one disk
now the data written to three disks. So the calculation should be done on the following way:

• Calculate, in which stripe the data is.
• Calculate within that stripe on which disk the data is
• Calculate on that disk within that stripe where exactly the data starts

Let us calculate the correct position now. The MFT start at 0x01FD00, what is given in clusters so
we should multiply it by the cluster size what is 0x1000 now. 0x01FD00 * 0x1000 = 0x1FD00000.

Now we should calculate first, in which stripe this byte exists. So simply divide this value by the
stripe size, what is 0x10000 multiplied by the nuber of disks what is 3 now, and take the integer part
of it. INT(0x1FD00000 / (3 * 0x10000)) = 0x0A9A so the MFT will be somewhere in the
0x0A9Ath stripe.

The second step is to calculate within this stripe which disk will contain the data. To get it we
should subtract from the original offset (0x1FD00000) the stripe number multiplied by the stripe
size multiplied by the number of disks. So 0x1FD00000 - 0xA9A * 3 * 0x10000 = 0x1FD00000 –
0x1FCE0000 = 0x20000. Now we should divide this value by the size of one stripe, and take the
integer part of it INT(0x20000 / 0x10000) = 0x02 what means, the data will be on disk 3 (we
started the numbering of the disks from 1 not from 0 this is why we should add one now).

0.

1.

2.

3.

4.

5.

6.

n.

n+1.

n+2.

Disk1
/dev/sdi

Disk2
/dev/sdh

Disk3
/dev/sdj

DATA

The final step is to calculate the offset within this stripe. To get it take the previous 0x20000 value
and subtract from it the disk number (the 0x02, not the one because of our numbering) multiplied by
the stripe size: 0x20000 - 0x02 * 0x10000 = 0 What means, the data will immediately at the
beginning of the stripe without any offset.

So we find the MFT file on the disk 3 (for me now it is /dev/sdj), at the beginning of the 0x0A9A
stripe. So the position is 0x0A9A * 0x10000 = 0x0A9A0000. But do not forget now everything is
measured from the beginning of the logical disk not from the beginning of the physical disk so we
should add to it 0x10000 as we did earlier. So the final offset on disk 3 (/dev/sdj) is 0x0A9A0000 +
0x10000 = 0x0A9B0000. If we check it really we see the next:

Again as we used to do we should find the first non system entry, what used to be the 35th one.
Because one entry is 1 kB in size 35 * 1 kB is 35kB, the MFT started at the beginning of the stripe,
and the stripe size is 64 kB now, so it will be on this disk, we should only scroll down to find it.

35 * 0x400 + 0x0A9B0000 = 0x0A9B8C00 lets go there by pressing ctrl-g then type this value

you will find here an entry of a file called pattern.txt. This file is stored on two cluster chains
described as 310980FB02, and 212BB3D5. Let us start to interpret them. First obviously the first
one.

The 0x31 means three bytes gives the first cluster of this chain, and one byte give us the length of
this chain.
First the length of the chain is stored, so it is 0x09 now
Then the first cluster of the chain, what is 0x02FB80 now, what means 0x02FB80 * 0x1000 =
0x2FB80000

Let us try to find this position. Again we should use the previous three steps

• Calculate, in which stripe the data is.

• Calculate within that stripe on which disk the data is
• Calculate on that disk within that stripe where exactly the data starts

We get the stripe number as: INT(0x2FB80000 / (3 * 0x10000)) = 0x0FE8
The disk number is 0x2FB80000 - 0x0FE8 * 3 * 0x10000 = 0. INT(0 / 0x10000) = 0 it means we
will find this data on disk 1 what is /dev/sdi for me.
Offset within the stripe is 0 - 0 * 0x10000 = 0 so the data will start immediately at the beginning of
this stripe.
The length of the cluster chain is 0x09 what means 0x09 * 0x1000 = 0x9000 bytes what is less than
the stripe size, so we do not has to take care to the stripe border.

Now find the position on the disk /dev/sdi. It is the stripe number 0x0FE8 multiplied by the stripe
size 0x10000 plus the offset of the logical disk what is also 0x10000. 0x0FE8 * 0x10000 +
0x10000 = 0x0FE90000 and the end of this chain will be at 0x0FE98FFF. Check it by jumping to
these positions:

to get the data back we can use a simple dd command:

dd if=/dev/sdi bs=1 skip=266928128 count=36864 > ./pattern.txt

Now reconstruct the second cluster chain, described as 212BB3D5, what should be interpreted as
follows:

0x21 means, the start cluster is stored on two bytes, and the chain length is stored on 1 byte.
First the chain length is stored, what is 2B now
The next two bytes 0xD5B3 is the start cluster of the chain. But it is relative number to the
previous one not absolute! And also do not forget, it is a signed number! So it is -2A4D.

Calculate the first cluster of the chain. First calculate absolute position from the relative one. To do
it add to the previous value this one: 0x02FB80 + (-2A4D) = 0x2D133. It is given in clusters so the
value in bytes: 0x2D133 * 0x1000 = 0x2D133000 Then we can calculate on the already well
known way.

We get the stripe number as: INT(0x2D133000 / (3 * 0x10000)) = 0x0F06
The disk number is 0x2D133000 - 0x0F06 * 3 * 0x10000 = 0x13000. INT(0x13000 / 0x10000) =

0x1 it means we will find this data on disk 2 what is /dev/sdh for me.
Offset within the stripe is 0x13000 - 1 * 0x10000 = 0x3000 so the data will start at the offset
0x3000 from the start of the stripe.
The length of the cluster chain is 0x2B what means 0x2B * 0x1000 = 0x02B000 bytes what is more
than the stripe size, so it will continue on the next disk. If we divide it by the stripe size what is
0x10000 we get two stripe will be fully utilized, and a third one will be started, but not fully
utilized.

Now find the position on the disk /dev/sdh. It is the stripe number 0x0F06 multiplied by the stripe
size 0x10000 plus the offset of the logical disk what is also 0x10000 plus the offset from the
beginning of the stripe, what is 0x3000. 0x0F06 * 0x10000 + 0x10000 + 0x3000 = 0x0F073000.

If we jump there by pressing ctrl-g then type 0x0F073000 we really find the continuation of the file
(because it contains a pattern it is easy to check now, the end of the previous part was Vg7 and this
one starts with Vg8 what seems to be really a continuation)

As we know it occupies this whole stripe so we can extract this data by the following dd command:

dd if=/dev/sdh bs=1 skip=252129280 count=53248 >> ./pattern.txt

It was the disk 2 so the file will continue on the same stripe in disk 3, and it will start from the
beginning of the cluster so the position will be /dev/sdj stripe 0x0F06 what means offset 0x0F06 *
0x10000 + 0x10000 = 0x0F070000. We can jump there by pressing ctrl-g then type this value.

Again it will occupy the whole stripe on this disk so we can extract it by the next dd command

dd if=/dev/sdh bs=1 skip=252116992 count=65536 >> ./pattern.txt

Because it is the disk 3 the data will continue on disk 1 (/dev/sdi), at the 0x0F06 + 1 stripe. And it
will occupy 0x2B - 0x20 + 0x03 = 0x0E clusters, means 0xE000 bytes.

The offset on this disk will be 0x0F07 * 0x10000 + 0x10000 = 0x0F080000 and the end of it will
be at 0x0F080000 + 0x0E * 0x1000 = 0x0F08E000. But it is calculated from the clusters, so the
real end of the file might be a bit earlier. The real end position: filesize (0x033452) - the data
already found. 0x033452 - 0x9000 - 0xD000 - 0x10000 = 0xD452. The real end of the file will be
instead of 0x0F08E000 at 0x0F08D452. Let us check these informations by jumping to those
positions

this last part can be extracted by the next dd command:

dd if=/dev/sdi bs=1 skip=252182528 count=54354 >> ./pattern.txt

Microsoft dynamic disk RAID5

Now we have three disks, evidenceRAID5-disk0.vhd (/dev/sdk), evidenceRAID5-disk1.vhd
(/dev/sdl), and evidenceRAID5-disk2.vhd (/dev/sdm) and we created a RAID5 volume across these
three disks. Let us try to reassemble a file on this disk.

In this case the disks are divided again to stripes. First we should know the stripe size, and the order
of the disks as a basic information.

Again if we check the MBR

it define the start of first partition at 0x3F what means 0x3F * 0x200 = 0x7E00, but there you will
find nothing. Like in the previous case, we should check the dynamic disk parameters. Find the
PRIVHEAD block at the beginning of the disk:

0x011B..0x0122 : The start of the logical disk is at 0x3F again this is not the start of the volume or
partition, but the start of the logical disk, we will have to add this value to the start of the partition.
0x012B..0x0132 : The start of the configuration now it is 0x0FF700 what means 0x0FF700 *
0x200 = 0x1FEE0000

Again a bit after this position starts the TOCBLOCK (0x1FEE0200), then the VMDB
(0x1FEE2200), and the VBLK blocks from (0x1FEE2400).

We already know that, the stripe size can be found in the VBLK component descriptor 0x32. This
block has the following content now

Here we can see that, there are 3 disks, and the stripe size is 0x80 blocks so 0x80 * 0x200 =
0x10000 bytes.

To get the order of the disks we collect the GUID of every disk from the PRIVHEAD block.

/dev/sdk : 09E64D13-F392-443A-9317-7C8403ACE4B9
/dev/sdl : C647EA1E-8965-46E9-8ED8-8434F17DF1CE
/dev/sdm : 6894EFD9-0AD2-4C6D-B963-3FCC9702C061

we can pair them with the values from the VBLK disk descriptor (0x34)

disk1 : 09E64D13-F392-443A-9317-7C8403ACE4B9

disk2 : C647EA1E-8965-46E9-8ED8-8434F17DF1CE
disk3 : 6894EFD9-0AD2-4C6D-B963-3FCC9702C061

If we pair it with the previous results:

disk1 : /dev/sdk
disk2 : /dev/sdl
disk3 : /dev/sdm

We can read the order from the VBLK partition descriptor (0x33)

According to it the disk order is:

2. disk1 : /dev/sdk
1. disk2 : /dev/sdl
0. disk3 : /dev/sdm

As we can see the partition starts at the 0ffset 0x41. Again it is measured from the beginning of the
logical disk so we must add to it the 0x3F value. So the partition will start at 0x80 on the 0th disk

(for me it is the disk 3 /dev/sdm). The 0x80 is measured in blocks so it means 0x80 * 0x200 =
0x10000.

As we see the block size is 0x0200 (we already know it), and the size of cluster is 0x08. It is
measured in blocks so the size of the cluster is 0x08 * 0x0200 = 0x1000 = 4096 bytes

The MFT file starts at the position 0x015355, it is measured in clusters, so it is 0x015355 * 0x1000
= 0x15355000

Now let us try to find this position. As you know the RAID 5 stores the xored value of the data. We
can check it easily now. This is the first block, so the data will be written to the 0th (disk3 /dev/sdm)
and 1th disk (disk2 /dev/sdl). It means the xored value must be stored on the 2nd disk (disk1
/dev/sdk). On the 1th disk we will find no data

It means on the 2nd disk (disk 1 /dev/sdk) we should find the same NTFS record again, because
anything XOR-ed with zero gives back the same value. And really on the disk /dev/sdk we find

The structure of the disks now looks like as follows:

Again we should follow the three steps used in the previous situation to get the position

• Calculate, in which stripe the data is.
• Calculate within that stripe on which disk the data is
• Calculate on that disk within that stripe where exactly the data starts

Now we should remember that one of the disks stores a xor value, so the useful information is
always stored on the number of disks - 1.

So the position of the MFT file can be calculated on the following way

We get the stripe number as: INT(0x15355000 / (2 * 0x10000)) = 0x0A9A
The disk number is 0x15355000 - 0x0A9A* 2 * 0x10000 = 0x15000. INT(0x15000 / 0x10000) = 1
it means we will find this data on the 2nd disk. But now because the XOR is continuously moving
from one disk to another it is not surely the which one is disk1, it can be the disk1 or disk 2 as well,

0.

1.

2.

3.

4.

5.

6.

n.

n+1.

n+2.

0th disk
/dev/sdm

1st disk
/dev/sdl

2nd disk
/dev/sdk

DATA

DATA DATA

DATA

DATA

DATA

DATA

XOR

XOR

XOR

depending on the stripe number. To figure it out we should calculate the stripe number modulo disk
number so 0x0A9A mod 3 = 2. It means the 1st disk and 2nd disk will store data and the 0th disk
will store the xor value. So the 2nd data disk now the disk 2 (/dev/sdk)
Offset within the stripe is 0x15000 - 0 * 0x10000 = 0x5000 so the data will start at the 0x5000 byte
from the beginning of the stripe.

Now find the position on the disk /dev/sdk. The position can be calculated as stripe number
0x0A9A multiplied by the stripe size 0x10000 plus the offset of the logical disk what is also
0x10000 plus the offset from the beginning of the stripe 0x5000. 0X0A9A * 0x10000 + 0x10000
+0x5000 = 0xA9B5000

We need our entry, it will be most probably the 35. so the position of it is 0xA9B5000 + 35 * 0x400
= 0xA9BDC00. Jump there by pressing ctrl-g then type this value

We find here a file called a.txt. Let us try to reassemble it. Now we have only one cluster chain, and
it is defined as 3120F3E701. It should be interpreted as

• 0x31 means we store the first cluster on 3 bytes, and we store the length of cluster chain is
stored on 1 byte.

• First the chain length is stored so the chain length is 0x20 bytes
• and the starting cluster is 0x01E7F3

Now calculate the position of this cluster. The cluster length is 4096 (0x1000) bytes. So it will start
at 0x01E7F3 * 0x1000 = 0x1E7F3000.

Again we should follow the three steps used in the previous situation to get the position

• Calculate, in which stripe the data is.
• Calculate within that stripe on which disk the data is
• Calculate on that disk within that stripe where exactly the data starts

We get the stripe number as: INT(0x1E7F3000 / (2 * 0x10000)) = 0x0F3F

The disk number is 0x1E7F3000 - 0x0F3F * 2 * 0x10000 = 0x13000. INT(0x13000 / 0x10000) = 1
it means we will find this data on the 2nd disk. But now because the XOR is continuously moving
from one disk to another it is not surely the which one is the 2nd disk, it can be the disk1 or disk 2
as well, depending on the stripe number. To figure it out we should calculate the stripe number
modulo disk number so 0x0F3F mod 3 = 0. It means the 0th disk and 1st disk will store data and the
2nd disk will store the xor value. So the 2nd data disk now the disk 1 (/dev/sdl)

Offset within the stripe is 0x13000 - 0 * 0x10000 = 0x3000 so the data will start at the 0x3000 byte
from the beginning of the stripe.

Now find the position on the disk /dev/sdl. The position can be calculated as stripe number 0x0F3F
multiplied by the stripe size 0x10000 plus the offset of the logical disk what is also 0x10000 plus
the offset from the beginning of the stripe 0x3000. 0x0F3F * 0x10000 + 0x10000 + 0x3000 =
0x0F403000

The size of the stripe is 0x10000 bytes and we started at the offset 0x3000 So until it we stored

0x10000 - 0x3000 = 0xD000 bytes. This was the 1st disk of the stripe, so the data will continue on
the 0th disk of the next stripe what is the stripe 0x0F40. 0x0F40 mod 3 = 1 it means the 0th data
disk is /dev/sdk, and the 1st data disk is /dev/sdm.

Let us calculate the position on 0th disk (/dev/sdk). It is the stripe 0x0F40. The position can be
calculated as stripe number 0x0F40 multiplied by the stripe size 0x10000 plus the offset of the
logical disk what is also 0x10000 plus the offset from the beginning of the stripe 0x00. 0x0F40 *
0x10000 + 0x10000 + 0x00 = 0x0F410000, the end of it will be at the end of the stripe
0x0F41FFFF

If you go a bit up yo will see a lot of letter “a” there as well why? Because for the previous stripe it
was the xor disk, and there were only data in one stripe, while no data on the other, and if you xor
anything with 0 you will get back the same values now the letter “a”. You can easily check this
theory by jumping to 0xF403000, where the “a” letters will start, because on the previous stripe we
had a 0x3000 byte offset from the stripe start.

So until now 0xD000 + 0x10000 = 0x1D000 byte of the file is stored. The length of the file is
0x1FE00 it means on the last stripe we store 0x1FE00 - 0x1D000 = 0x2E00 bytes.

It will be on the 1st disk of the stripe 0xF40. What means /dev/sdm, and the position 0x0F40 *
0x10000 + 0x10000 + 0x00 = 0x0F410000, the end of it will be at 0x0F412DFF

	Examination of Disk
	Master Boot Record (MBR)
	How to find the beginning of a partition

	NTFS
	Volume Boot Record
	Master File Table ($MFT file)
	STANDARD_INFORMATION block (0x10)
	FILE_NAME (0x30)
	Resident DATA (0x80)
	An example to resident file
	Non resident DATA (0x80)
	Example to non resident DATA

	Metasploit timestomp
	Slack space (Metasploit slacker)

	Microsoft Dynamic disk (Simple volume)
	Structure of the VBLK blocks
	VBLK partition descriptor (0x33)

	Microsoft dynamic disks (RAID0 stripe)
	VBLK Disk descriptor (0x34)
	VBLK Component descriptor (0x32)
	Reassemble of a file

	Microsoft dynamic disk RAID5

