
Meterpreter Extension

To your own meterpreter extension yo will have to do the following sub tasks:

• Create a .dll file (server part), what will be uploaded to the victim machine, and will do the
required task. To do this there is a meterpreter solution in the „C:\Program
Files\Rapid7\framework\msf3\external\source\meterpreter\workspace\meterpreter.sln”
directory. It is created in Visual Studio 2008 C++ so I recommend to use that, for your
development.

• You have to create a client part of this application in ruby, what will send the commands to
and accept the answers from the previously described server part.

• Most probably you have to create a data type definition, where you describe what format do
you send the data between the Server and the Client part. In case of simple application it
may not be necessary.

• And finally you have to create an application in ruby to register the new extension to the
console interface to be able to use it.

Let us start to create our first application, the infamous „Hello Word” application, just to see how
does the development goes under meterpreter. First we start to write a server application To do this
open the „C:\Program
Files\Rapid7\framework\msf3\external\source\meterpreter\workspace\meterpreter.sln” file.

Choose release as Build method (the default is Debug, but it is much more difficult to make the
solution compile on that way, and most probably you do not need the features given by it, so better
to choose the Release):

Now try to compile the original version came with metasploit, to get the same start point what is in
the metasploit. From the build menu choose the „Build Solution” command.

You will get an error message (this tutorial is based on the 3.6 release version of metasploit, so
further versions may give different error messages, the task is to use your general C++
programming knowledge, and somehow compile it. Since this time only references to different
libraries, and header files were missing, from the solution, what one had to readd):

Search for the project ext_server_sniffer, and you will get this error message:

------ Build started: Project: ext_server_sniffer, Configuration: Release Win32 ------
Compiling...
sniffer.c
c:\program
files\rapid7\framework\msf3\external\source\meterpreter\source\extensions\sniffer\sniffer.h(9) :
fatal error C1083: Cannot open include file: 'HNPsSdkUser.h': No such file or directory
Build log was saved at "file://c:\Program
Files\Rapid7\framework\msf3\external\source\meterpreter\workspace\ext_server_sniffer\Release\B
uildLog.htm"
ext_server_sniffer - 1 error(s), 0 warning(s)

It is caused by that this project requires the MicroOLAP Packet Sniffer SDK, and it does not know
where is it installed on your machine. It is not a free application, but a 30 day demo version could
be downloaded, what is more than enough to do this tutorial. The demo version can be downloaded
from the following website:
After you downloaded and installed it to your machine the next step is to tell the ext_server_sniffer

project where you installed it. To do this right click ext_server_sniffer in the „solution explorer”
window, and in the pop-up menu choose the properties command.

In the appearing new window go to the configuration properties / C/C++ / General and click to the
„...” next to the „Additional Include Directories”. One can see that there is a ./pssdk directory
added, but if you go to the „C:\Program
Files\Rapid7\framework\msf3\external\source\meterpreter\workspace\ext_server_sniffer” directory
there is no pssdk sub-directory in your file-system. Because it is not a free program the Metasploit
does not give it to you.

Navigate to the install directory of pssdk (by default it is C:\Program Files\MicroOLAP Packet
Sniffer SDK\) and within that find the win32\pssdk_dll\cpp subdirectory. From here copy the
include directory to the directory of ext_server_sniffer projekt (by default „C:\Program
Files\Rapid7\framework\msf3\external\source\meterpreter\workspace\ext_server_sniffer”) and do
not forget to rename it from include to pssdk.

OK, we corrected the error, try to compile again. Now we will get another very nice error message
about the ext_server_sniffer project:

------ Rebuild All started: Project: ext_server_sniffer, Configuration: Release Win32 ------
Deleting intermediate and output files for project 'ext_server_sniffer', configuration 'Release|Win32'
Compiling...
sniffer.c
..\..\source\extensions\sniffer\sniffer.c(471) : warning C4101: 'ifn' : unreferenced local variable
Linking...
LINK : fatal error LNK1181: cannot open input file '.\pssdk\pssdk.lib'
Build log was saved at "file://c:\Program
Files\Rapid7\framework\msf3\external\source\meterpreter\workspace\ext_server_sniffer\Release\B
uildLog.htm"
ext_server_sniffer - 1 error(s), 1 warning(s)

OK, correct it as well. Now the problem is that, it find the include files, but it does not find the
precompiled .lib fájl belongs to the pssdk. Again right click ext_server_sniffer in the „solution
explorer” window, and in the pop-up menu choose the properties command.

In the appearing window choose the configuration properties / Linker / General, and click to the
„...” next to the „Additional Library Directories”. We can see that it will search the lib again in the
./pssdk subdirectory, but we copied there only the include files, not the lib files.

OK, let us correct it, copy the pssdk.lib file from „C:\Program Files\MicroOLAP Packet Sniffer
SDK\win32\pssdk_dll\cpp\lib.vc” to the previously created „C:\Program
Files\Rapid7\framework\msf3\external\source\meterpreter\workspace\ext_server_sniffer\pssdk”
directory.

Again let us try to compile it.

And we get an even more exciting error message:

------ Build started: Project: ext_server_sniffer, Configuration: Release Win32 ------
Compiling...
sniffer.c
..\..\source\extensions\sniffer\sniffer.c(471) : warning C4101: 'ifn' : unreferenced local variable
Linking...
 Creating library .\Release/ext_server_sniffer.lib and object .\Release/ext_server_sniffer.exp
sniffer.obj : error LNK2019: unresolved external symbol _lock_release referenced in function
_sniffer_receive@20
sniffer.obj : error LNK2019: unresolved external symbol _lock_acquire referenced in function
_sniffer_receive@20
sniffer.obj : error LNK2019: unresolved external symbol _lock_create referenced in function
_InitServerExtension
sniffer.obj : error LNK2019: unresolved external symbol _lock_destroy referenced in function
_DeinitServerExtension

.\Release/ext_server_sniffer.dll : fatal error LNK1120: 4 unresolved externals
Build log was saved at "file://c:\Program
Files\Rapid7\framework\msf3\external\source\meterpreter\workspace\ext_server_sniffer\Release\B
uildLog.htm"
ext_server_sniffer - 5 error(s), 1 warning(s)

If we search for the lock_release function mentioned in the error message, Then right click to it, and
from the pop-up menu select the „go to definition” command we will know that it is defined in the
thread.c file what is part of the common project. The problem is that, the pre-compiled common.lib
file is not added to the linker.

To correct it again right click ext_server_sniffer in the „solution explorer” window, and in the pop-
up menu choose the properties command.

In the appearing window go to the configuration properties / Linker / input and click to the „...” next
to the „additional dependecies”and add to it the: ..\common\Release\common.lib line.

Then Build the solution again. At this time the compilation was successful:

========== Build: 11 succeeded, 0 failed, 0 up-to-date, 1 skipped ==========

Now we could compile the meterpreter came with metasploit, we have a stable base, and can start to
add to it our code. One can start from an empty project, but there is a project called boiler, what is
practically an empty project but with all the necessary settings to use it from metasploit, so first for
the hello world application we only modify it, and do not create a new project, to keep it simplier.
Double click to the boiler.c under the ext_server_boiler project.

We will see the following functions:

DWORD __declspec(dllexport) InitServerExtension(Remote *remote)
DWORD __declspec(dllexport) DeinitServerExtension(Remote *remote)

These functions are always necessary they load and unload the extensions, and register, deregister
the commands of the new extension to the Meterpreter. We do not have to change the content of
these functions, because they are written in general way. The InitServerExtension will go through
the customCommands[] array, and register all the commands find there:

DWORD __declspec(dllexport) InitServerExtension(Remote *remote)
{

DWORD index;
hMetSrv = remote->hMetSrv;
for (index = 0;
 customCommands[index].method;
 index++)

command_register(&customCommands[index]);
return ERROR_SUCCESS;

}

And similarly the DeinitServerExtension deregister all the commands what it finds in the
customCommands[] array.

DWORD __declspec(dllexport) DeinitServerExtension(Remote *remote)
{

DWORD index;
for (index = 0;
 customCommands[index].method;
 index++)

command_deregister(&customCommands[index]);
return ERROR_SUCCESS;

}

So because they are written general way, and works do not touch them. What we have to do is to
add our new command to the customCommands[] array. Now it contains the following:

Command customCommands[] =
{

{ "boiler",
 { request_boiler, { 0 }, 0 },
 { EMPTY_DISPATCH_HANDLER

},
},
// Terminator
{ NULL,
 { EMPTY_DISPATCH_HANDLER },
 { EMPTY_DISPATCH_HANDLER },
},

};

As one can see a command in this array practically built up from three parts:

“boiler”: this will be the external name of the command, the client part should call the command in
this name.
request_boiler: the name of the function should be called if the client calls the previous “boiler”
command (practically the internal name of the same function).
EMPTY_DISPATCH_HANDLER: a handler to the dispatcher function.

If someone want then can change these names, but I leave it now in the default.
As one can see this array has to have at least two elements always, one command and there is a
closing tag.

So we have a registered command externally called boiler, internally called request_boiler. We have
to write it, so find the request_boiler. Now it looks like as:

DWORD request_boiler(Remote *remote, Packet *packet)
{

return 0;
}

As we can see it does nothing. So modify it, to say back that “hello world”. Practically we will have
to create a response packet, add to it the string “Hello World!” send it back to the meterpreter, and
exit from the function. To do this change the content of the request_boiler function to the following:

1. DWORD request_boiler(Remote *remote, Packet *packet)
2. {
3. Packet *response = packet_create_response(packet);
4. CHAR buf[]="Hello World!";
5. packet_add_tlv_string(response, TLV_TYPE_BOILER_HELLO,

buf);
6. packet_transmit_response(ERROR_SUCCESS, remote,

response);
7. return ERROR_SUCCESS;
8. }

Let us see what does it do:

1. function header
2. starts the function body
3. we create a variable called response points to a Packet type structure, and we create it.
4. We define a character array and the content of it will be “Hello World!”
5. we add to the response packet a TLV_TYPE_BOILER_HELLO the content of the buf string
6. We send the response, it was successful, and we send to the remote machine the response

packet.
7. The end result of the function is success
8. end of function body

If someone tries to compile this code it will not be successful, because the
TLV_TYPE_BOILER_HELLO is an unknown data type for the compiler. We have to define it first.
(Now we send only a string, and of course it could be done with built in data type as
packet_add_tlv_string(response, TLV_TYPE_STRING, buf); then we do not
have to define a datatype. We did it only because in more difficult cases most probably one should
use complex types)

To do that open the boiler.h file.

First it should look like as follows:

#ifndef _METERPRETER_SOURCE_EXTENSION_BOILER_BOILER_H
#define _METERPRETER_SOURCE_EXTENSION_BOILER_BOILER_H
#include "../../../common/common.h"
#endif

As we can see it is empty. Here we can add the new data type. It will be done on the following way:

#ifndef _METERPRETER_SOURCE_EXTENSION_BOILER_BOILER_H
#define _METERPRETER_SOURCE_EXTENSION_BOILER_BOILER_H
#include "../../../common/common.h"

#define TLV_TYPE_EXTENSION_BOILER 0
#define TLV_TYPE_BOILER_HELLO \

MAKE_CUSTOM_TLV(\
TLV_META_TYPE_STRING, \
TLV_TYPE_EXTENSION_BOILER, \
TLV_EXTENSIONS + 1)

#endif

first we define a TLV_TYPE_EXTENSION_BOILER it will be our parent (root) data type.
Then we create a TLV_TYPE_BOILER_HELLO type by the help of MAKE_CUSTOM_TLV
command, it will be a string type, and it will be the child of TLV_TYPE_EXTENSION_BOILER
and the first child of that.

Now we can try to build it, press F7 or Build\Build Solution

if it was successful we finished the server part of our new extension. We have to copy the
compiled .dll file to the meterpreter directory. Copy the “C:\Program
Files\Rapid7\framework\msf3\external\source\meterpreter\workspace\ext_server_boiler\Release\ext
_server_boiler.dll” to the “C:\Program Files\Rapid7\framework\msf3\data\meterpreter” directory

We can start the Client side of the Meterpreter extension

Navigate to the “C:\Program Files\Rapid7\framework\msf3\lib\rex\post\meterpreter\extensions” and
create there a sub-directory called “boiler”

within this newly created sub-directory create a file as boiler.rb with the following content:

1. #!/usr/bin/env ruby
2. require 'rex/post/meterpreter/extensions/boiler/tlv'
3. module Rex
4. module Post
5. module Meterpreter
6. module Extensions
7. module Boiler
8. class Boiler < Extension
9. def initialize(client)
10. super(client, 'boiler')
11. client.register_extension_aliases(

12. [
13. {
14. 'name' => 'boiler',
15. 'ext' => self
16. },
17.])
18. end
19. def funci()
20. request = Packet.create_request('boiler')
21. response = client.send_request(request)
22. {
23. :answer =>

response.get_tlv_value(TLV_TYPE_BOILER_HELLO),
24. }
25. end
26. end
27. end;
28. end;
29. end;
30. end;
31. end

1. we define the environment
2. we will use the rex/post/meterpreter/extensions/boiler/tlv.rb it will contain the data type. We

have to define it again, because the ruby of course do not understand the header file of the
C++ code.

3. It will be the module Rex
4. It will be the module Post
5. It will be the module Meterpreter
6. It will be the module Extensions
7. It will be the module Boiler
8. The new boiler class will be created from the Extensions class
9. We always have to create a function called initialize, what has an input parameter called

client
10. it calls the initialize function of the parent class
11. we register this new extension with the name boiler, this function expects an
12. array of associations as input parameter
13. start an association
14. to the name index we put the value “boiler”
15. to the ext index we put the value “self”
16. end of association. Do not fordet in case of ruby even if there are no more elements you has

to use the “,” coma at end
17. end of array and register function
18. end of initialize function
19. we create the function what will send a command to the server side. One can call it

anything, now I call it as funci. Because the hello word does not require any input parameter
it does not have also.

20. We create a new packet called request and the content of it should be the external name of
the server side function (now I did not change the “boiler” name)

21. We create a new variable called response and we put into it the response we got
22. we break the response to parts by the help of association
23. to the :answer index we put the TLV_TYPE_BOILER_HELLO type data (practically a

string)
24. end of association
25. end of function funci
26. End of module Class definition
27. End of module Boiler
28. End of module Extensions
29. End of module Meterpreter
30. End of module Post
31. End of module Rex

We referenced to a file rex/post/meterpreter/extensions/boiler/tlv.rb so it must be created. It must be
the same what we did in the boiler.h file. The content of it should be the following:

1. module Rex
2. module Post
3. module Meterpreter
4. module Extensions
5. module Boiler
6. TLV_TYPE_EXTENSION_BOILER = 0
7. TLV_TYPE_BOILER_HELLO = TLV_META_TYPE_STRING |

(TLV_TYPE_EXTENSION_BOILER + TLV_EXTENSIONS + 1)
8. end
9. end
10. end
11. end
12. end

1. It will be the module Rex
2. It will be the module Post
3. It will be the module Meterpreter
4. It will be the module Extensions
5. It will be the module Boiler
6. We create a root data type called TLV_TYPE_EXTENSION_BOILER
7. Then we create a TLV_TYPE_BOILER_HELLO type by the help of, it will be a string type,

and it will be the child of TLV_TYPE_EXTENSION_BOILER and the first child of that.
8. End of module Boiler
9. End of module Extensions
10. End of module Meterpreter
11. End of module Post
12. End of module Rex

Now we are able to send our request to the server side, and we get the answer, but it were not be
visible on the console ui. So our final task is to register it to the console. To do it navigate to the
“C:\Program
Files\Rapid7\framework\msf3\lib\rex\post\meterpreter\ui\console\command_dispatcher” directory.
Here create a file called boiler.rb. The content of it should be the following:

1. require 'rex/post/meterpreter'
2. module Rex
3. module Post
4. module Meterpreter
5. module Ui

6. class Console::CommandDispatcher::Boiler
7. Klass = Console::CommandDispatcher::Boiler
8. include Console::CommandDispatcher
9. def initialize(shell)
10. super
11. end
12. def commands
13. {
14. "boiler_test" => "Test Command",
15. }
16. end
17. def cmd_boiler_test(*args)
18. print_line("TEST...")
19. res=client.boiler.funci()
20. print_line(res[:answer])
21. print_line("Finished!")
22. return true
23. end
24. def name
25. "Boiler"
26. end
27. end
28. end
29. end
30. end
31. end

1. We use the rex/post/meterpreter
2. It will be the module Rex
3. It will be the module Post
4. It will be the module Meterpreter
5. It will be the module Ui
6. it will be the class Console::CommandDispatcher::Boiler
7. we create it
8. we use the Console::CommandDispatcher
9. we have to create an initialize function.
10. It only call the parent initialize
11. end of initialize function
12. we have to define the commands
13. it will be an association
14. we must give every command a name, and associate to that a description the name of the

command will be boiler_test and the description of it will be “test command”. Again do not
forget the , from the end the ruby requires it even if there are no more elements

15. end of associations
16. end of commands function
17. now we have to tell what to do when the boiler_test command is called. To do it we have to

write a function and the name of it must be cmd_boiler_test (the command name with cmd_
prefix).

18. Print the TEST... text to the screen just to show the user something happens
19. we call the previously created funci function, what will call the server side component, and

the result will be in the res variable.
20. We print the response we got from the server component to the screen (recall we put to the

answer association the data)
21. we print a text again
22. the result was successful
23. end of the command
24. define a name
25. Boiler (the commands in this ruby script will belongs to the Boiler group)
26. end of name
27. End of the class
28. End of module Ui
29. End of module Meterpreter
30. End of module Post
31. End of module Rex

Now we can test if it works well. Start the meterpreter console

We attack an application, and set meterpreter as payload. Wait until the session openes

connect to it by the sessions -i sessionID

we ask a help by the command help, one can check, there is no boiler command

Then load the new module by the use boiler command

we ask a help again by the help command

As we can see there is the boiler_test command with the description of it.

To overview of the process we just did:

Server side component
A dll copy it to

C:\Program Files\Rapid7\framework\msf3\
data\meterpreter
Boiler.c

customCommands[] array contains
External name
Internal name

Function
Boiler.h

Data types

Client side component
A ruby script at

C:\Program Files\Rapid7\framework\msf3\lib\
rex\post\meterpreter\extensions\Boiler
Boiler.rb

Initialize
Function

calls server side external name
tlv.rb

Data types

Client side Ui
A ruby script at

C:\Program Files\Rapid7\framework\msf3\lib\rex\
post\meterpreter\ui\console\command_dispatcher
Boiler.rb

commands
commandname, description

cmd_commandname

Metasploit Console

Use boiler
(loads client side components, and
uploads the server side dll to victim
memory)

commandname

