
How to restore the injured zip files

Table of Contents
How to restore the injured zip files..1
single part zip file...2

Create a sample file...2
Zip file structure..6
Central directory entry structure..8
Local file header structure...9
Reconstruction of central directory entries...13
End of central directory structure..15
Reconstruction of "End of central directory" entry...16

Multipart zip file..18
Create a sample file...18
Restore the central directory structure...23
End of central directory structure..31
Reconstruction of "End of central directory" entry...31

single part zip file

Create a sample file

Our first task is to create a zip file. To do it select some files, and compress them with your favourite
zip archiver.

Set the parameters, then click to the OK button, to compress the files.

Open the file in a hex editor, and go to the end of the file:

To simulate the destroyed last cluster go back from the end of the file until the first round 0x1000 value
(0x1000 = 4096 the default cluster size). For me it will be the position 0x00257000. Select this range

Select the fill command, and fill the range until the end of the file with 00 byte, to simulate the
destroyed last cluster.

Type the fill pattern, and click to the Fill button

then click to the save button, to save the modifications

Zip file structure

To be able to restore a zip file we should know the structure of it. From high view the zip file looks like
as follows:

As we can see the catalog info is at the end of the zip file. Practically it means, if the beginning of the

Local file header 1

Extra info in local file header

Encryption Header

DATA (compressed file 1)

Local file header 2

Extra info in local file header

Encryption Header

DATA (compressed file 2)

Local file header n

Extra info in local file header

Encryption Header

DATA (compressed file n)

Central directory
File Entry 1
File Entry 2
File Entry n

file injures, that not so big problem, only the file there can not be decompressed, but the others will
work fine. See 1-zipfiles.zip, where the first 512 bytes of the file is overwritten with 0 simulating a bad
sector on the disk, and 2-zipfiles.zip, where the first 4096 bytes is overwritten by 0 simulating a bad
cluster at the beginning of the file. Both of these files can be decompressed with any zip tool, just one
file will be wrong

If the file is injured at the middle then the situation is the same. See 2-zipfiles.zip. All the files not
injured can be extracted easily with any zip tool. The one file injured will be obviously wrong, the
others will work fine.

There will be problem, if the Central directory at the end of the file is injured. In this case will will get
for example the following error message with 7zip, and none of the files can be extracted

The problem can be fixed by fixing the Central directory structure at the end of the file. To be able to
do it we must know the structure of the Central directory which is the following:

Central directory entry structure

So we must create this structure. The question is where to create it? Fortunately it can be found quite
easily, there are the local file headers, and we can reassemble the central directory from these
structures.

Local file header structure

As we can see every local file header contains the compressed size. So we should find the last local file
entry, and and the compressed size to the end of it. The Central directory structure will start there.

The central file directory should contain every file entry, so it is easier, to collect all the information in
one round, not first find only the last one. In my case it will be the following:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x0000

0x0010 CRC-32 Compressed size Uncompressed size

0x0020 External file attributes Filename

0x0030 filename continue Extra field
0x0040 File Comment

Central directory file header
signature = 0x02014b50

Version made
by

Version
needed to

extract
(minimum)

General
purpose bit

flag

Compression
method

File last
modification

time

File last
modification

date

File name
length

Extra field
length

File comment
length

Disk number
where file

starts

Internal file
attributes

Relative offset of local file
header. This is the number
of bytes between the start

of the first disk on which the
file occurs, and the start of

the local file header

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x0000 CRC-

0x0010 32 Compressed size Uncompressed size File

0x0020 name Extra field

Local file header signature =
0x04034b50 (read as a

little-endian number)

Version
needed to

extract
(minimum)

General
purpose bit

flag

Compression
method

File last
modification

time

File last
modification

date

File name
length

Extra field
length

Then we search for the next local file header entry:

search for the 50 4b 03 04 (local file header):

Then we find the second file entry:

By pressing the F3 button we will find the third file entry:

Pressing again the F3 button we will find the fourth file entry:

We will not find more entries:

Now we can calculate the start of the center directory structure: it will be 0x0011EF64 + 0x00138B96
= 0x00257AFA

if we go there we will see the following:

This part of the file is zeroed out (it simulates the injured last cluster).

Now we must write back the data to here from the four local file header:

Reconstruction of central directory entries

let us compare the two headers.

Central directory:

local file header:

as we can see the the beginning of the two header are almost identical:

• signature: we know it
• version made by: we do not know, but if we use the same as version to extract that should be

good.
• Version need to extract: we know
• General purpose bit flag: we know
• compression method: we know
• file last modification time: we know
• file last modification date: we know
• CRC-32 checksum: we know
• compressed size: we know
• uncompressed size: we know
• file name length: we know
• extra field length: we know

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x0000

0x0010 CRC-32 Compressed size Uncompressed size

0x0020 External file attributes Filename

0x0030 filename continue Extra field
0x0040 File Comment

Central directory file header
signature = 0x02014b50

Version made
by

Version
needed to

extract
(minimum)

General
purpose bit

flag

Compression
method

File last
modification

time

File last
modification

date

File name
length

Extra field
length

File comment
length

Disk number
where file

starts

Internal file
attributes

Relative offset of local file
header. This is the number
of bytes between the start

of the first disk on which the
file occurs, and the start of

the local file header

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x0000 CRC-

0x0010 32 Compressed size Uncompressed size File

0x0020 name Extra field

Local file header signature =
0x04034b50 (read as a

little-endian number)

Version
needed to

extract
(minimum)

General
purpose bit

flag

Compression
method

File last
modification

time

File last
modification

date

File name
length

Extra field
length

• file comment lengt: we do not know, but we create a new central directory, so we can just left
the comment as empty

• disk number where it starts: we have one disk only, so it will be zero
• internal file attributes: lowest bit: one if ASCII text 0 if binary. Second lowest bit: if set, that

a 4 byte variable record length control field precedes each logical record indicating the length of
the record. Now all the files are binary so this field is always zero

• external file attributes: this is a host dependent filed. On windows system use 0x2000000
means the standard file attributes.

• Relative offset: address of the beginning of local file header corresponding to this entry.
• Filename: we know
• Extra field: we know
• File comment: we set it to zero.

Based on these knowledge in my case we get the following central directory entry:
for the first file it is:

• signature: 50 4b 01 02
• version made by: 14 00
• Version need to extract: 14 00
• General purpose bit flag: 00 00
• compression method: 08 00
• file last modification time: E9 10
• file last modification date: 9E 31
• CRC-32 checksum: 9C E9 7B CC
• compressed size: F8 75 00 00
• uncompressed size: 00 F0 00 00
• file name length: 06 00
• extra field length: 00 00
• file comment length: 00 00
• disk number where it starts: 00 00
• internal file attributes: lowest bit: 00 00
• external file attributes: 20 00 00 00
• Relative offset: 00 00 00 00

• Filename: 6E 63 2E 65 78 65
• Extra field: EMPTY
• File comment: EMPTY

similarly we can just read and substitute the values for the other files from the local file headers
corresponding to that central directory entries.

End of central directory structure

As one can see there are some bytes not filled yet after the four central directory entry. It is the "End of
central directory" entry, what has the following structure:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x0000

0x0010 comment

End of central directory
signature = 0x06054b50

Number of
this disk

Disk where
central

directory
starts

Number of
central

directory
records on
this disk

Total number
of central
directory
records

Size of central directory
(bytes)

Offset of start of central
directory, relative to start of

archive

Comment
length

Reconstruction of "End of central directory" entry

Based on this information we can generate the "end of central directory" entry:

• signature: 50 4B 05 06
• number of disks: now we have disk so it is 00 00
• disk where the central directory starts: we have only one zip file so it is 00 00
• number of central directory records on this disk: 04 00
• total number of central directory records: 04 00
• size of central directory: E5 00 00 00
• offset of start of the central directory we have already calculated: FA 7A 25 00
• comment length: 00 00
• comment: EMPTY

After we added back the central directory entry we can extract the files. (some portion of the last file is
also injured so obviously that file will not be correct, but the first three can be extracted successfully).

But the other files are fine.

Multipart zip file

What you should remember, the disk number is not the file number.the disk number will be still 00. it
will be treated like one zip is created, then cut to the necessery number of peaces.

Create a sample file

Our first task is to create a multipart zip file. To do it select some files, and compress them with your
favourite zip archiver.

Set the split size to an appropriate value, to get abot 3-5 files.

I got a four part zip file

now simulate the injure of the last cluster of the last file (there is the central directory structure). Open
the last zip file with your favourite hex editor

Go to the end of the file:

To simulate the destroyed last cluster go back from the end of the file until the first round 0x1000 value
(0x1000 = 4096 the default cluster size). For me it will be the position 0x0004a000. Select this range

And fill the file until the end with 00 byte. To do it select Edit / fill:

For pattern use the 00 byte, and fill the previously selected area:

Then save the file:

Then save the file

If you try to extract it:

Hopefully it will not work:

Restore the central directory structure

As we did in case of the single part zip file search for the local file headers in every zip file.

only for remaind the local file header structure looks like as follow:

So open every zip file, and search for the signature 50 4b 03 04 in them, I got the following:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x0000 CRC-

0x0010 32 Compressed size Uncompressed size File

0x0020 name Extra field

Local file header signature =
0x04034b50 (read as a

little-endian number)

Version
needed to

extract
(minimum)

General
purpose bit

flag

Compression
method

File last
modification

time

File last
modification

date

File name
length

Extra field
length

in the first file:

in the second file:

There are no more local file entry obviously, because I added four files.

Now let us calculate the position of the central directory structure. The compressed size of the last entry
is 0x0011EF64 and it starts at position 0x00089B96. So the central directory structure starts at:
0x0011EF64 + 0x00089B96 = 0x001A8AFA. But this calculation is totally wrong, because, it does not
encounter the file size limit. The file size is 0x000AF000. Let us consider the filesize limit.
In the 002 file we have 0x000AF000 - 0x00089B95 = 0x0002546B bytes space left. If we substract it
from the required size: 0x0011EF64 - 0x0002546B = 0x000F9AF9. The length limint of the file 003
is 0x000AF000 smaller than the required size. So the central directory will be in the fourth file. At
position 0x000F9AF9 - 0x000AF000 = 0x0004AAF9.

Let us jump to that position:

And start to substitute back the information from the local file headers to the central directory
structures looks like as follows:

The first one will be this:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x0000

0x0010 CRC-32 Compressed size Uncompressed size

0x0020 External file attributes Filename

0x0030 filename continue Extra field
0x0040 File Comment

Central directory file header
signature = 0x02014b50

Version made
by

Version
needed to

extract
(minimum)

General
purpose bit

flag

Compression
method

File last
modification

time

File last
modification

date

File name
length

Extra field
length

File comment
length

Disk number
where file

starts

Internal file
attributes

Relative offset of local file
header. This is the number
of bytes between the start

of the first disk on which the
file occurs, and the start of

the local file header

• signature: 50 4b 01 02
• version made by: 14 00
• Version need to extract: 14 00
• General purpose bit flag: 00 00
• compression method: 08 00
• file last modification time: E9 10
• file last modification date: 9E 31
• CRC-32 checksum: 9C E9 7B CC
• compressed size: F8 75 00 00
• uncompressed size: 00 F0 00 00
• file name length: 06 00
• extra field length: 00 00
• file comment length: 00 00
• disk number where it starts: 00 00
• internal file attributes: lowest bit: 00 00
• external file attributes: 20 00 00 00
• Relative offset: 00 00 00 00
• Filename: 6E 63 2E 65 78 65
• Extra field: EMPTY
• File comment: EMPTY

The second entry will be:

• signature: 50 4b 01 02
• version made by: 14 00
• Version need to extract: 14 00
• General purpose bit flag: 00 00
• compression method: 08 00
• file last modification time: 35 53
• file last modification date: 92 43
• CRC-32 checksum: EB 13 FF 6F
• compressed size: 31 AD 09 00
• uncompressed size: F0 3C 0A 00
• file name length: 11 00
• extra field length: 00 00
• file comment length: 00 00
• disk number where it starts: 00 00
• internal file attributes: lowest bit: 00 00
• external file attributes: 20 00 00 00
• Relative offset: 1C 76 00 00
• Filename: 6f 6C 65 76 69 65 77 5F 73 65 74 75 70 2E 65 78 65
• Extra field: EMPTY
• File comment: EMPTY

• signature: 50 4b 01 02
• version made by: 14 00
• Version need to extract: 14 00
• General purpose bit flag: 00 00
• compression method: 08 00
• file last modification time: 40 71
• file last modification date: B7 30
• CRC-32 checksum: 67 CE D3 C8
• compressed size: C8 67 09 00
• uncompressed size: 00 0E 11 00
• file name length: 0B 00
• extra field length: 00 00
• file comment length: 00 00
• disk number where it starts: 00 00
• internal file attributes: lowest bit: 00 00
• external file attributes: 20 00 00 00
• Relative offset: 7C 23 0A 00
• Filename: 4f 4C 4C 59 44 42 47 2E 45 58 45
• Extra field: EMPTY
• File comment: EMPTY

• signature: 50 4b 01 02
• version made by: 14 00
• Version need to extract: 14 00
• General purpose bit flag: 00 00
• compression method: 08 00
• file last modification time: 1B 15
• file last modification date: 8B 39
• CRC-32 checksum: 86 7F 54 45
• compressed size: 64 EF 11 00
• uncompressed size: 70 47 2C 00
• file name length: 0B 00
• extra field length: 00 00
• file comment length: 00 00
• disk number where it starts: 00 00
• internal file attributes: lowest bit: 00 00
• external file attributes: 20 00 00 00
• Relative offset: 6D 9B 08 00
• Filename: 50 72 6F 63 6D 6F 6E 2E 65 78 65
• Extra field: EMPTY
• File comment: EMPTY

As we can see the end of central directory structure is missing, so generate it.

End of central directory structure

As one can see there are some bytes not filled yet after the four central directory entry. It is the "End of
central directory" entry, what has the following structure:

Reconstruction of "End of central directory" entry

Based on this information we can generate the "end of central directory" entry:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x0000

0x0010 comment

End of central directory
signature = 0x06054b50

Number of
this disk

Disk where
central

directory
starts

Number of
central

directory
records on
this disk

Total number
of central
directory
records

Size of central directory
(bytes)

Offset of start of central
directory, relative to start of

archive

Comment
length

• signature: 50 4B 05 06
• number of disks: 00 00
• disk where the central directory starts: the central directory is on the last disk: 00 00
• number of central directory records on this disk: 04 00
• total number of central directory records: 04 00
• size of central directory: E5 00 00 00
• offset of start of the central directory: FA 7A 25 00 (recognize, it is measured from the

beginning of the first file, not from the beginning of this file, like it were only one huge zip file)
• comment length: 00 00
• comment: EMPTY

The reconstructed central directory, and end of central directory looks like as:

We can extract the files. The last one will be injured because some part of it is overwritten too, but the
other three are saved.

	How to restore the injured zip files
	single part zip file
	Create a sample file
	Zip file structure
	Central directory entry structure
	Local file header structure
	Reconstruction of central directory entries
	End of central directory structure
	Reconstruction of "End of central directory" entry

	Multipart zip file
	Create a sample file
	Restore the central directory structure
	End of central directory structure
	Reconstruction of "End of central directory" entry

