
How to recover injured ESE files

Table of Contents
How to recover injured ESE files..1
Required applications...2

Install the symbol files..2
Active directory..4

Simulate the injure of the first 128 bytes of the ntds.dit file...4
Simulate the injure of the first 8192 bytes of the ntds.dit file...9
Simulate the injure of the first 16384 bytes of the ntds.dit file...16

Find the Highest DB time...22
Find the Checksum...23

Required applications

• Domain controller
• Hex editor
• olly debugger
• api monitor
• symbol files for the operating system
• python interpreter

Install the symbol files

Start the symbol file installer

Wait until it extracts the setup files:

Accept the licence agreement:

Define the destination directory, the default is c:\Windows\Symbols amd click to the OK button

Click yes, to create the required directory:

The ESE (Enhanced Storage Engine) file format (you may call it as JET database) used at many places
in Microsoft windows like active directory, exchange, search engine, and so on. Because its wildely
used important to know, how to restore it in case of a data loss event (OK, of course everyone has an up
to date and working backup, but just for the time you may not).

Let us start with the Active directory file.

Active directory

Simulate the injure of the first 128 bytes of the ntds.dit file

To be able to manypulate the files of the active directory first you must stop the active directory
service. To do it start the administrative tools \ Services, right click to the Active Directory Domain
Services and from the popup menu select the Stop command.

The operating system warns you, it will stop some dependent services as well, just click to the Yes
button, to stop those too.

I recommend you to always create a copy of the file we work on, what can be used, if something goes
wrong. So first create a safe copy form the c:\windows\ntds\ntds.dit file.

Then install some hex editor, I will use the 010 editor.

So I right click to the c:\windows\ntds\ntds.dit file, and open it with my hex editor.

Now we start to simulate the injure of the file by overwriting some bytes. Go to the beginning of the
file, and select Edit \ Insert/Overwrite \ Overwrite Bytes...

In the popup window define the size 128 byte, and set the byte value to hex 0, to overwrite the first
128 bytes of the file with null bytes. Then click to the Overwrite button.

Then save the file, select the File / Save command.

Now try to start the active directory domain services by starting the administrative tools \ Services,
then right click to the Active Directory Domain Services, and from the popup menu select the Start
command

The Service tries to start

And finally...
it starts:

Now one may ask, how can it start, if we destroyed the first 128 bytes of it? What happens? The answer
is simple, the ESE files has two headers, both of them 8192 bytes at the beginning of the file. (more
exactly one header is one page long, and the page size can vary in case of ESE files, but in case on
ntds.dit it is always 8 kB.)

So when we destroyed the first 128 bytes only the first header was destroyed, and the application
system was able to correct it by the help of the second header.

HEADER 1

HEADER 2

DATA

0x2000 (more exactly 1 page)

0x0000

0x4000 (more exactly 2 page)

Simulate the injure of the first 8192 bytes of the ntds.dit file

Again, to be able to manypulate the files of the active directory first you must stop the active directory
service. To do it start the administrative tools \ Services, right click to the Active Directory Domain
Services and from the popup menu select the Stop command.

The operating system warns you, it will stop some dependent services as well, just click to the Yes
button, to stop those too.

I recommend you to always create a copy of the file we work on, what can be used, if something goes
wrong. So first create a safe copy form the c:\windows\ntds\ntds.dit file. (I recommend to create a
new one, because we restarted the service, and the file modified because of that).

Right click to the c:\windows\ntds\ntds.dit file, and open it with a hex editor.

Now we start to simulate the injure of the file by overwriting the first header (8192 bytes). Go to the
beginning of the file, and select Edit \ Insert/Overwrite \ Overwrite Bytes...

In the popup window define the size 8192 byte, and set the byte value to hex 0, to overwrite the first
8192 bytes of the file with null bytes. Then click to the Overwrite button.

Then save the file, select the File / Save command.

The second header remain intact:

Now try to start the active directory domain services by starting the administrative tools \ Services,
then right click to the Active Directory Domain Services, and from the popup menu select the Start
command

The Service tries to start

And finally...
It can not start:

OK, previous it suprised us, because it simply corrected the error, now there is an other suprise, if there
are two headers, why it can not repair it now again?

The answer is simple again, just we should examine the structure of the header shown in the next
picture (all the numbers must be stored in little endian format):

Previously we overwrite the first 128 bytes (0x0080) bytes. Fortunately it was not containing a very
important information, the page size at position 0x00EC..0x00EF. This is why previously the operating
system was able to correct it. Now the page size is overwritten, so the operating system can not find out
the size of the header so it can not find the secondary header, and if it did not find the secondary header
of course it can not use it. (In case of ntds.dit the page size is always 8192 bytes as I mentioned

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x0000

0x0010 Highest DB time (MANDATORY) RAND ? (NOT mandatory) DB signature time: sec, min

0x0020

0x0030

0x0040

0x0050

0x0060 DBID ? (NOT mandatory) RAND ? (NOT mandatory)

0x0070

0x0080

0x0090

0x00A0

0x00B0

0x00C0

0x00D0 Shadow disabled

0x00E0 file format version

0x00F0 repair count Recovery Time (NOT mandatory)
0x0100
0x0110
0x0120
0x0130
0x0140

0x0150

Header checksum
(MANDATORY)

File ulMagic 0x89abcdef
(MANDATORY)

File format verison
0x00000620

(MANDATORY)

File type 0x00000000
(MANDATORY) [0: db, 1:

stream]

hour, day, month, year
(1990=0) (NOT mandatory)

DB state 0x00000003
(MANDATORY) [1: just

created 2: dirty 3: clean
4: database is being

upgraded 5:
ForceDetach]

log position that was used when the database was last
brought to a clean shutdown state or NULL

if the database is in a dirty state (NOT mandatory)
[block: 2byte, sector: 2byte, generation: 4 byte]

Last Consistent time cont sec, min, hour, day, month,
year (1900=0) (NOT mandatory)

Last Attach time sec, min, hour, day, month, year
(1900=0) (NOT mandatory)

 log position that was used the last
time the database was attached If 0 dirty (NOT

mandatory)

Last Detach time sec, min, hour, day, month, year
(1900=0) (NOT mandatory)

log position that was used the last
time the database was detached If 0 dirty (NOT

mandatory)

Log signature time: sec, min, hour, day, month, year
(0=1900) (NOT mandatory)

Consists of a log position ?at full backup? (NOT
mandatory)

Previous full backup sec, min, hour, day, month, year
(1900=0) (NOT mandatory)

Generation lower number The lower log generation
number associated with the backup (NOT mandatory)

Consists of a log position ?at incremental backup? (NOT
mandatory)

Previous incremental backup sec, min, hour, day,
month, year (1900=0) (NOT mandatory)

Generation lower number The lower log generation
number associated with the backup (NOT mandatory)

Consists of a log position ?at current full backup? (NOT
mandatory)

Current full backup sec, min, hour, day, month, year
(1900=0) (NOT mandatory)

Generation lower number The lower log generation
number associated with the backup (NOT mandatory)

Last object ID (NOT
mandatory)

Major version (NOT
mandatory)

Minor version (NOT
mandatory)

Build number (NOT
mandatory)

Servicepack (NOT
mandatory)

pagesize 0x00002000
(MANDATORY)

File format verison ? (NOT
mandatory)

File format verison minor?
(NOT mandatory)

already, so theoretically it could find it, but as one can see practically the operating system not use this
assumption.)

Now we know the problem, the page size at position 0x00EC..0x00EF is overwritten. And the idea is
that, if we write back there the correct page size (8192 byte) it should start to work.

Let us try it in practice. Open the ntds.dit in your hex editor, and go to the position 0xEC, and write
there the value 8192 (0x2000) in little endian notation, then click to the File \ Save, to save the
changes:

Now try to start the service again.

And it starts as expected. (Nice if the practice follows the theory).

Simulate the injure of the first 16384 bytes of the ntds.dit file

Again, to be able to manypulate the files of the active directory first you must stop the active directory
service. To do it start the administrative tools \ Services, right click to the Active Directory Domain
Services and from the popup menu select the Stop command.

The operating system warns you, it will stop some dependent services as well, just click to the Yes
button, to stop those too.

I recommend you to always create a copy of the file we work on, what can be used, if something goes
wrong. So first create a safe copy form the c:\windows\ntds\ntds.dit file. (I recommend to create a
new one, because we restarted the service, and the file modified because of that).

Right click to the c:\windows\ntds\ntds.dit file, and open it with a hex editor.

Now we start to simulate the injure of the file by overwriting both headers (16384 bytes). Go to the
beginning of the file, and select Edit \ Insert/Overwrite \ Overwrite Bytes...

In the popup window define the size 16384 byte, and set the byte value to hex 0, to overwrite the first
16384 bytes of the file with null bytes. Then click to the Overwrite button.

Then save the file, select the File / Save command.

Now try to start the active directory domain services by starting the administrative tools \ Services,
then right click to the Active Directory Domain Services, and from the popup menu select the Start
command

The Service tries to start

It can not start as we expected:

Now it is not enough to correct the page size parameter, but we must correct all the mandatory
parameters. There are seven such a parameter alltogether:

• Header checksum
• Magic (constant 0x89ABCDEF)
• File format version (constant 0x00000620)
• File type (0x00000000)
• Highest DB time
• DB state (0x00000003)
• Page size (0x00002000)

Fortunately from these seven parameters five are constant, so we know them, only two must be
adjusted to the actual ntds.dit file:

So we fix the five constant parameters, and now we leave the two varing ones now, then select the
File / Save command:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x0000

0x0010 Highest DB time (MANDATORY) RAND ? (NOT mandatory) DB signature time: sec, min

0x0020

0x0030

0x0040

0x0050

0x0060 DBID ? (NOT mandatory) RAND ? (NOT mandatory)

0x0070

0x0080

0x0090

0x00A0

0x00B0

0x00C0

0x00D0 Shadow disabled

0x00E0 file format version

0x00F0 repair count Recovery Time (NOT mandatory)
0x0100
0x0110
0x0120
0x0130
0x0140

0x0150

Header checksum
(MANDATORY)

File ulMagic 0x89abcdef
(MANDATORY)

File format verison
0x00000620

(MANDATORY)

File type 0x00000000
(MANDATORY) [0: db, 1:

stream]

hour, day, month, year
(1990=0) (NOT mandatory)

DB state 0x00000003
(MANDATORY) [1: just

created 2: dirty 3: clean
4: database is being

upgraded 5:
ForceDetach]

log position that was used when the database was last
brought to a clean shutdown state or NULL

if the database is in a dirty state (NOT mandatory)
[block: 2byte, sector: 2byte, generation: 4 byte]

Last Consistent time cont sec, min, hour, day, month,
year (1900=0) (NOT mandatory)

Last Attach time sec, min, hour, day, month, year
(1900=0) (NOT mandatory)

 log position that was used the last
time the database was attached If 0 dirty (NOT

mandatory)

Last Detach time sec, min, hour, day, month, year
(1900=0) (NOT mandatory)

log position that was used the last
time the database was detached If 0 dirty (NOT

mandatory)

Log signature time: sec, min, hour, day, month, year
(0=1900) (NOT mandatory)

Consists of a log position ?at full backup? (NOT
mandatory)

Previous full backup sec, min, hour, day, month, year
(1900=0) (NOT mandatory)

Generation lower number The lower log generation
number associated with the backup (NOT mandatory)

Consists of a log position ?at incremental backup? (NOT
mandatory)

Previous incremental backup sec, min, hour, day,
month, year (1900=0) (NOT mandatory)

Generation lower number The lower log generation
number associated with the backup (NOT mandatory)

Consists of a log position ?at current full backup? (NOT
mandatory)

Current full backup sec, min, hour, day, month, year
(1900=0) (NOT mandatory)

Generation lower number The lower log generation
number associated with the backup (NOT mandatory)

Last object ID (NOT
mandatory)

Major version (NOT
mandatory)

Minor version (NOT
mandatory)

Build number (NOT
mandatory)

Servicepack (NOT
mandatory)

pagesize 0x00002000
(MANDATORY)

File format verison ? (NOT
mandatory)

File format verison minor?
(NOT mandatory)

Find the Highest DB time

From the two varing parameters the Highest DB time is the simplier one so start with this. The bytes
0x08..0x0F at the begining of every page contains the DB Time of that page. So we must go through
the ntds.dit file page by page (the page size is still 8192 bytes), and find the highest value at the
position 0x08..0x0F. It must be written there.

Of course it is a bit difficult to do manually, so I create a simple python script, to do it:

import struct
f = open("ntds.dit","rb")
f.read(8192)
f.read(8192)
f.read(8)
n2 = struct.unpack("i",f.read(4))[0]
max = n2
while n2 !='':
 f.read(8188)
 n2 = f.read(4)
 if n2 != '':
 n2 = struct.unpack("i",n2)[0]
 if max < n2:
 max = n2
f.close()
print "MAX : " + format(max & 0xffffffff, "08x")

If you run this script it will gives you the required Highest DB time value:

And we can write it to the position 0x0010..0x0017, then save itm select the File / Save command:

Find the Checksum

Now comes the more difficult part, the calculation of the checksum. First we should figure out, how
dows the checksum calculated, then, we can write a program to calculate it.

One can try to start the service, and debug it, how does it test the checksum, but better to find a simpler
application. For example the ntdsutil is such an application, it opens the ntds.dit, and test it, and a
simplier application. First test, how dows it behaves. Start the ntdsutil with the command ntdsutil

from a command prompt. Then connect to the active directory withe the

activate instance ntds

command. Then use the

files

command, to start to examine the files, you will get some error message:

Exit from the ntdsutil with the quit command.

Now start the api monitor.

On the popup welcome message click to the OK button.

It starts to load the Definition files:

Find in the API filter the Data Access and Storage \ Extensible Storage Engine \ esent.dll

And check it as it can be seen in the picture:

Then go to the command prompt, and start again the ntdsutil

You will get a popup window, where the API monitor asks if you want to monitor the newly created
process. Take care to check if it really the ntdsutil, because the windows often used to start various
processes.

Click to the monitor button

 Start the ntdsutil with the command ntdsutil from a command prompt. Then connect to the
active directory withe the

activate instance ntds

command. Then use the

files

command, to start to examine the files, you will get some error message:

But the error message is unimportant. Go back to the api monitor, and scroll over the captured events.
You will find some with yellow background. The yellow background means the function returned with
some error. It is just fine for us, because we got some error. We can read the function name,
JetAttachDatabaseA:

Now we chan analyze this function, to find the cause of the error (most probably the wrong checksum).
To do it start the Olly Debugger, and set up it to use the symbol files by click to the Options \
Options...

In the Opening window select Debugging \ Debugging data, and define the symbol path by clicking to
one of the ... icons.

The open the ntdsutil by clicking the Files \ Open...

Then find the windows\System32\ntdsutil.exe, and click to the open button

When the application opens right click to the disassembly window, and from the popup menu select
search for \ Names.

In the appearing window start to type JeatAttachDatabaseA, the function we want to examine.
Double click to it, then we jump to the start of the function.

Put there a breakpoint by the F2 button, or by right clicking to the dissasembly window and select the
Breakpoint \ Toggle command.

Then run the application by the F9 button.

connect to the active directory withe the

activate instance ntds

command. Then use the

files

command, to start to examine the files

The debugger stops at the break point:

Start to scroll down, and find the CALL instructions, because most probably one of the internal
functions will return with error. Put a break point to every call instruction (there are only two of them),
and let the application run until that. Then press the F8 button, to step over the call function, and
examine the return value of it (the return value is most of the time in the EAX register). If you have two
test machines you can compare the function results of a machine with good ntds.dit and one with the
modified ntds.dit to see when we get some difference.

The first CALL returns with 1 in EAX register. It is normal, one get the same return value, if we run the
ntdsutil for a good file.

But the second call returns with an interesting result 0xFFFFFC02. If you change this DWORD to
decimal you get -1022, what is the error message we saw in the ntdsutil. So most probably this is what

we are looking for:

Now we can remove all the previous breakpoints, and follow the suspicious CALL by clicking it once,
and pressing the ENTER button.

Then we put a break point by the F2 button to the beginning of this function.

Now we type again the files command in the ntdsutil, and it stops on our new breakpoint.

Again as we did earlier we put a breakpoint to every call, and let the application to run until the
CALL, Then press the F8 button on the CALL, to step over it. Then examine the return value of the
CALLs (EAX), if the result is the 0xFFFFFC02. We will find the call returns this value:

Then we repeat the previous step. Again we remove all the previous breakpoints, and follow the
suspicious CALL by clicking it once, and pressing the ENTER button.

Then we put a break point by the F2 button to the beginning of this function.

Now we type again the

files

command in the ntdsutil, and it stops on our new breakpoint.

Again as we did earlier we put a breakpoint to every call, and let the application to run until the
CALL, Then press the F8 button on the CALL, to step over it. Then examine the return value of the
CALLs (EAX), if the result is the 0xFFFFFC02. We will find the call returns this value:

Now repeat the previous step. Remove all the previous breakpoints, and follow the suspicious
CALL by clicking it once, and pressing the ENTER button.

Then we put a break point by the F2 button to the beginning of this function.

Now go back to the ntdsutil in the command prompt, and type again the

files

command, and it stops on our new breakpoint.

Again as we did earlier we put a breakpoint to every call, and let the application to run until the
CALL, Then press the F8 button on the CALL, to step over it. Then examine the return value of the
CALLs (EAX), if the result is the 0xFFFFFC02. We will find the call returns this value:

As one can see now a CALL EDX is the suspicious function. It is a bit different like earlier.

Now repeat the previous step. Remove all the previous breakpoints, and follow the suspicious
CALL by clicking it once, and pressing the ENTER button.

Then we put a break point by the F2 button to the beginning of this function.

Now go back to the ntdsutil in the command prompt, and type again the

files

command, and it stops on our new breakpoint.

Again as we did earlier we put a breakpoint to every call, and let the application to run until the
CALL, Then press the F8 button on the CALL, to step over it. Then examine the return value of the
CALLs (EAX), if the result is the 0xFFFFFC02. We will find the call returns this value:

Now repeat the previous step. Remove all the previous breakpoints, and follow the suspicious
CALL by clicking it once, and pressing the ENTER button.

Then we put a break point by the F2 button to the beginning of this function.

Now go back to the ntdsutil in the command prompt, and type again the

files

command, and it stops on our new breakpoint.

Again as we did earlier we put a breakpoint to every call, and let the application to run until the
CALL, Then press the F8 button on the CALL, to step over it. Then examine the return value of the
CALLs (EAX), if the result is the 0xFFFFFC02. Now we do not find any call returns this value, but
there is a suspicious one. It returns some interesting value, and the name of it ChecksumPage... make it
interesting :

Enter to this function with the F7 button:

In this function there is an interesting CALL, we do not see the name of it, or any information about it.
Let us enter to this CALL with the F7 button again:

We will find there the following code:

As one can see it uses a lot of XOR operation, and uses the 128 bit XMM registers. Both of these is
often happens in case of HASHING or ENCRYPTION or DECRYPTION algorythms. Now we are
searchinng for a HASH algorithm, so hopefully this is what we were looking for.

If you put a break poit after the calculation in EAX we see the result, probably the checksum.

If one analyze the checksum calculation code of the assembly, then after a time one can figure out, it
just creates a simple XOR checksum. Based on this information we can create a python script, to
calculate the checksum of both header, and also print the read checksum:

import struct
f = open("ntds.dit","rb")
n1 = struct.unpack("i",f.read(4))[0]
print "HEADER 1:"
print "READ CHECKSUM: " + format(n1 & 0xffffffff, "08x")
n1 = 0
for x in range(0,2047):
 n2 = struct.unpack("i",f.read(4))[0]
 n1 = n1 ^ n2
n1 = n1 ^ 0x89abcdef
print "CALC CHECKSUM: " + format(n1 & 0xffffffff, "08x")
print "---"
print "HEADER 2:"
n1 = struct.unpack("i",f.read(4))[0]
print "READ CHECKSUM: " + format(n1 & 0xffffffff, "08x")
n1 = 0
for x in range(0,2047):
 n2 = struct.unpack("i",f.read(4))[0]
 n1 = n1 ^ n2
f.close()
n1 = n1 ^ 0x89abcdef
print "CALC CHECKSUM: " + format(n1 & 0xffffffff, "08x")
f.close()

When we run this script it calculates the checksums:

Now we can open the file again, and add the calculated checksum and save it File \ Save.

Now try to start the service again.

And it starts as expected:

	How to recover injured ESE files
	Required applications
	Install the symbol files

	Active directory
	Simulate the injure of the first 128 bytes of the ntds.dit file
	Simulate the injure of the first 8192 bytes of the ntds.dit file
	Simulate the injure of the first 16384 bytes of the ntds.dit file
	Find the Highest DB time
	Find the Checksum

